13. Determine whether the series
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is absolutely convergent, conditionally convergent or divergent.
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We first check for absolute convergence. In other words, does E converge or
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not? Use the Limit Comparison Test to compare our series to the harmonic series g —
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which we know diverges. Compute lim ”31 2 = lim ¥ This is a rational
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function with the degree of the numerator (3) equal to the degree of the denominator.

Hence the limit is the ration of the degree 3 coefficients or % = 1. Since 0 < 1 < o0, the
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Limit Comparison Test shows Z divergses.
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The series Z (=" n3 + 5 is alternating and lim nor
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a rational function for which the degree of the numerator is less than the degree of the
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denominator. Finally, since e (25— 9)2 = (@ —9)? <0
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for z > 0, the sequence — — Is decreasing. Hence the Alternating Series Test shows
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Z (—1)" " is convergent and therefore conditionally convergent.
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14. Find the radius of convergence and interval of convergence of the power series
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Begin with the radius using either the Ratio method or the Root method. For the
Ration method, compute
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For the Root method compute
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Either of these calculations shows that the radius of convergence is 1.
To calculate the interval of convergence we need to evaluate the two series
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The second series is a p—series with p=1/2<1and s0 diverges. The first series is an
alternating p—series with p = 1/2 > 0 and so converges. Hence the interval of convergence
is (2,4].

15. Find the power series centered at the origin for f(z) = ﬁ
Hint: f(x) is related to the derivative of a series you should know.
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First note that PR R (-1) = PR Next recall that you can figure
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out a power series 1or 9 = Qm = 5 E: 5 = ngzo W aKing derivatives
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we see (2_7&:)2 = E W, or if you prefer E (27174—)2
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