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The MacLaurin series for cos x is

cos x =
∞∑

n=0

(−1)nx2n

(2n)!

a. What is the radius of convergence of this series?
(Just an answer is sufficient - no reason need be given.)

b. Write down the MacLaurin series for
cos x − 1

x2
. Give a reason why it is the

MacLaurin series.
c. Write down the MacLaurin series for the function

∫ x

0

cos t2 dt.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For (a), the radius of convergence is ∞, a result you should memorize. To see why

(which you were NOT asked to do), compute lim
n→∞

x2n+2

(2n+2)!

x2n

(2n)!

= lim
n→∞

(2n)!
(2n + 2)!)

· |x|2 =

limn→∞
|x|2

(2n+1)(2n+2) = 0.

For (b), cosx − 1 =
∞∑

n=1

(−1)nx2n

(2n)!
and hence

cos x − 1
x2

=
∞∑

n=1

(−1)nx2n−2

(2n)!
. This is

equal to
∞∑

n=0

(−1)n−1x2n

(2n + 2)!
. Why is this the MacLaurin series for

cos x − 1
x2

? The best answer

is that by the calculations we just did, the series represents the function. The MacLaurin
series for the power series is itself (that’s a theorem) and since the series and the function
are the same, the series is also the MacLaurin series for the function.

For (c), cos t2 =
∞∑

n=0

(−1)nt4n

(2n)!
, so

∫ x

0

cos t2 dt =
∫ x

0

∞∑
n=0

(−1)nt4n

(2n)!
dt =

∞∑
n=0

(−1)nx4n+1

(4n + 1)(2n)!
.
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Show that
∞∑

n=1

(−1)n+1

√
n2 + n

converges by checking the hypotheses of the Alternating

Series Test.
Then show the calcualtions needed to find an m such that

0 <

∞∑
n=1

(−1)n+1

√
n2 + n

−
m∑

n=1

(−1)n+1

√
n2 + n

< 0.01



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To see that the series converges using the Alternating Series Test, we need to show
that limn→∞ bn = 0 and that bn+1 ≤ bn. First, note that

bn =
1√

n2 + n
.

Since
lim

n→∞

√
n2 + n = ∞,

we have that
lim

n→∞
1√

n2 + n
= 0.

To check that bn+1 ≤ bn, ask: Is

1√
(n + 1)2 + n + 1

≤ 1√
n2 + n

?

After clearing fractions and squaring, we see that the inequality holds if

n2 + n ≤ (n + 1)2 + n + 1

holds. This second inequality is clearly true. (Note: another way is to show that d
dnbn =

− 1
2 (n2 + n)−

3
2 (2n + 1) and this is clearly < 0 for n ≥ 1.)

Recall that |Rm| ≤ bm+1. Thus, for the error calculation, we need to solve

bm+1 < 0.01 .

( Also, since

0 <
∞∑

n=1

(−1)n+1

√
n2 + n

−
m∑

n=1

(−1)n+1

√
n2 + n

,

note that m must be odd since the remainder has the same sign as bm+1.)
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For each of the series below, do two things. First compute lim
n→∞

an and then use this

calculation to say if you are certain that
∞∑

n=1

an diverges or if the limit calculation does



not suffice to say if the series converges or diverges. Just circle diverges or can not tell
after the series for the second part of each question

A. an =
1
n !

:

Recall n ! = n(n − 1) · · · 2 · 1

a. lim
n→∞

an =

b.
∞∑

n=1

an diverges can not tell

B. an =
n

1 +
√

n
:

a. lim
n→∞

an =

b.
∞∑

n=1

an diverges can not tell
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For A we note 0 < 1
n ! = 1

n · 1
n−1 · · · 1

2 · 1
1 < 1

n and since lim
n→∞

1
n

= 0, the Squeeze

Theorem promises lim
n→∞

1
n !

= 0. This tells us nothing about whether the series
∞∑

n=1

1
n !

converges. (Remark: It is correct that the series does converge, in fact to e − 1, but this
calculation does not show it.)

For B we write
n

1 +
√

n
=

√
n

1√
n

+ 1
so lim

n→∞
n

1 +
√

n
= lim

n→∞

√
n

1√
n

+ 1
=

∞
0 + 1

= ∞.

The Divergence Test shows that the series
∞∑

n=1

n
1+

√
n

diverges.
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Write an equation for the hyperbola which has foci at (3, 3) and (3, 11) and which has
asymptotes y = x + 4 and y = 10 − x. What are the coordinates of the vertices?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The center is halfway between the foci so has coordinates (3, 7). Thus c = 4 since it
is the distance from the center to a focus.



The vertices of the hyperbola are on the line x = 3 since they lie on the line between
the foci, so the equation has the form

(y − 7)2

a2
− (x − 3)2

b2
= 1

where 16 = c2 = a2 + b2.
The asymptotes have slope ±1 from the slope–intercept form of the equation. The

slopes are ±a
b for any hyperbola so a = b and 16 = 2a2 so a2 = b2 = 8.

The vertices are a distance a from the center. Since a2 = 8, a = 2
√

2 and the vertices
are at (3, 7 ± 2

√
2 ).
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1. Write down a definite integral which gives the length of the curve x(t) = t3 + 4t + 1,
y(t) = t4 + t2 for 0 ≤ t ≤ 5. Do NOT attempt to evaluate either this integral or the
integrals you will write down in parts 2 and 3.

2. Write down a definite integral which gives the surface area of the surface of revolution
obtained by rotating the parameterized curve in 1 around the x–axis.

3. Write down a definite integral which gives the surface area of the surface of revolution
obtained by rotating the parameterized curve in 1 around the y–axis.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have the curve x(t) = t3 + 4t + 1, y(t) = t4 + t2 for 0 ≤ t ≤ 5.

Note ds =

√(
dx

dt

)2

+
(

dy

dt

)2

dt =
√

(3t2 + 4)2 + (4t3 + 2t)2 dt

1. The definite integral which gives the length of this curve is

L =
∫ 5

0

√
(3t2 + 4)2 + (4t3 + 2t)2 dt .

2. The definite integral which gives the surface area of the surface of revolution obtained
be rotating the parameterized curve around the x-axis is

S =
∫ 5

0

2π(t4 + t2)
√

(3t2 + 4)2 + (4t3 + 2t)2 dt

since t4 + t2 is the distance from the point
(
x(t), y(t)

)
on the curve to the x–axis.

3. The definite integral which gives the surface area of the surface of revolution obtained
be rotating the parameterized curve around the y-axis is

S =
∫ 5

0

2π(t3 + 4t + 1)
√

(3t2 + 4)2 + (4t3 + 2t)2 dt



since t3 + 4t + 1 is the distance from the point
(
x(t), y(t)

)
on the curve to the y–axis.
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Solve the initial value problem

x
dy

dx
= x2cos x + y

y(π) = 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First, bring the equation to the canonical form:

(∗) dy

dx
+

(
− 1

x

)
y = x cos x

Next compute the integrating factor:

I(x) = e
∫

− 1
x dx = e− ln x =

1
x

Multiply the equation (∗) by the integrating factor, I(x), to obtain:

(
1
x

y

)′
= cos x

Integrate this:
1
x

y =
∫

cos x dx = sinx + C

and thus
y = x(sinx + C)

To determine C, compute y(π) two ways:

1 = y(π) = π(sin(π) + C) = πC

so C = 1
π and the solution is:

y = x
(
sinx +

1
π

)
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Which improper integrals below converge and which diverge? Indicate your reasoning and
be careful.



a)
∫ ∞

0

1√
x3

dx

b)
∫ ∞

1

sin2 x

x2
dx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a)
∫ ∞

0

1√
x3

dx =
∫ 1

0

1√
x3

dx +
∫ ∞

1

1√
x3

dx

= lim
t→0+

∫ 1

t

1√
x3

dx + lim
t→∞

∫ t

1

1√
x3

dx

= lim
t→0+

−2√
x

∣∣∣∣
1

t

+ lim
t→∞

−2√
x

∣∣∣∣
t

1

= − 2 + lim
t→0+

2√
t

+ lim
t→∞

−2√
t

+ 2

= + ∞

so
∫ ∞

0

1√
x3

dx diverges.

b) Use the Comparison Theorem. Note 0 ≤ sin2 x

x2
≤ 1

x2
since −1 ≤ sinx ≤ 1. Evaluate∫ ∞

1

1
x2

dx = lim
t→∞

∫ t

1

1
x2

dx = lim
t→∞

−1
x

∣∣∣∣
t

1

= lim
t→∞

−1
t

+1 = 1+0. Since
∫ ∞

1

1
x2

dx converges

and since 0 ≤ sin2 x

x2
≤ 1

x2
,
∫ ∞

1

sin2 x

x2
dx converges.
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Expand
2x3 + 5x2 + 5x + 5
(x + 1)2(x2 + 2)

using the method of partial fractions.
Remark: Indicate your setup clearly since half the points are for the correct setup.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Setup:
2x3 + 5x2 + 5x + 5
(x + 1)2(x2 + 2)

=
A

x + 1
+

B

(x + 1)2
+

Cx + D

x2 + 2

Solve: Clear denominators by multiplying through by (x + 1)2(x2 + 2):

(1) 2x3 + 5x2 + 5x + 5 = A(x + 1)(x2 + 2) + B(x2 + 2) + (Cx + D)(x + 1)2

(2) =A(x3 + x2 + 2x + 2) + B(x2 + 2) + C(x3 + 2x2 + x) + D(x2 + 2x + 1)



Set x = −1 in (1). This give 3 = 3B so B = 1.
Setting B = 1 and collecting like terms in (2) gives the system of equations

2 = A + C (3)
5 = A + 2C + D + 1
5 = 2A + C + 2D (4)
5 = 2A + D + 2 (5)

Solve: C = 2 − A from (3); D = 3 − 2A from (5); so (4) becomes

5 = 2A + (2 − A) + 2(3 − 2A) ;

so 3A = 3; A = 1. Then C = 2 − A = 1 and D = 3 − 2A = 1. Hence

2x3 + 5x2 + 5x + 5
(x + 1)2(x2 + 2)

=
1

x + 1
+

1
(x + 1)2

+
x + 1
x2 + 2
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Evaluate the integral ∫
sec2

(√
x

)
dx .

Hint: First do a substitution and then an integration by parts.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First, apply the substitution t =
√

x, so x = t2 and dx = 2t dt
(or dt = dx

2
√

x
, dx = 2

√
x dt = 2t dt).

Then
∫

sec2(
√

x ) dx =
∫

sec2 t · 2t dt = 2
∫

t sec2 t dt.
To compute

∫
t sec2 t dt use integration by parts with

dv = sec2 t dt v = tan t
u = t du = dt

so
∫

t sec2 t dt = t tan t −
∫

tan t dt = t tan t − ln | sec t| + C.

Hence
∫

sec2(
√

x ) dx = 2
(√

x tan(
√

x ) − ln
∣∣ sec(

√
x )

∣∣) + C.

Remark: Some people computed
∫

tan t by substitution instead of from memory.∫
tan t dt =

∫
sin t
cos t dt = −

∫
du
u = − ln | cos t| + C = ln | sec t| + C after the substitution

u = cos t, du = − sin t dt.
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1. Solve the equation 32x = 5 for x. An answer involving ln of other numbers is fine.



2. Use logarithmic differentiation to find dy
dx if

y =
(x2 − 1)2.3(x3 + 2)1.1

(x2 + 1)0.4
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. ln
(
32x

)
= ln 5

2x ln 3 = ln 5
2x = ln 5

ln 3

2x = ln 5
2 ln 3

2. ln y = ln
(

(x2−1)2.3(x3+2)1.1

(x2+1)0.4

)
= ln

(
(x2 − 1)2.3

)
+ ln

(
(x3 + 2)1.1

)
− ln

(
(x2 + 1)0.4

)
ln y = 2.3 ln(x2 − 1) + 1.1 ln(x3 + 2) − 0.4 ln(x2 + 1)

Differentiating both sides,
d
dx

(
ln y

)
= d

dx

(
2.3 ln(x2 − 1) + 1.1 ln(x3 + 2) − 0.4 ln(x2 + 1)

)
or

1
y

dy

dx
=

2.3(2x)
x2 − 1

+
1.1(3x2)
x3 + 2

− 0.4(2x)
x2 + 1

=
(4.6)x
x2 − 1

+
(3.3)x2

x3 + 2
− (0.8)x

x2 + 1
So

dy

dx
=

(
(x2 − 1)2.3(x3 + 2)1.1

(x2 + 1)0.4

)(
(4.6)x
x2 − 1

+
(3.3)x2

x3 + 2
− (0.8)x

x2 + 1

)
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The function, f(x) = x3 − 3x2 + x for x in the interval [−2, 0], has an inverse function
because f is strictly increasing on this interval.

a. What is the domain of the inverse function, f−1?
b. What is the value of the derivative of f−1 for x = −5?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a. Domain (f−1) = Range(f). Since f is increasing on [−2, 0] the range of f is[
f(−2), f(0)

]
which is [−22, 0].

b. First note that f−1(5) = y if and only if −5 = f(y), or −5 = x3 − 3x2 + x or
0 = x3 − 3x2 + x + 5. Since −5 ∈ [−22, 0] there is precisely one solution to this
equation in the interval [−2, 0] and by trial and error you find that f(−1) = −5. In
other words, f−1(−5) = −1.
Next compute f ′(x) = 3x2 − 6x + 1.

Then
(
f−1

)′(−5) =
1

f ′(f−1(−5)
) =

1
f ′(−1)

=
1
10

.


