The MacLaurin series for cos *x* is

$$
\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}
$$

- a. What is the radius of convergence of this series? (Just an answer is sufficient - no reason need be given.)
- b. Write down the MacLaurin series for $\frac{\cos x 1}{2}$ $\frac{x}{x^2}$. Give a reason why it is the MacLaurin series.

c. Write down the MacLaurin series for the function \int_0^x 0 $\cos t^2 dt$. ..

For (a), the radius of convergence is ∞ , a result you should memorize. To see why (which you were NOT asked to do), compute $\lim_{n\to\infty}$ x^{2n+2} $(2n+2)!$ *x*2*ⁿ* $\frac{x^{2n}}{(2n)!} = \lim_{n \to \infty}$ $(2n)!$ $\frac{(2n)!}{(2n+2)!} \cdot |x|^2 =$

 $\lim_{n\to\infty} \frac{|x|^2}{(2n+1)(2n+2)} = 0.$ For (b), $\cos x - 1 = \sum^{\infty}$ *n*=1 $\frac{(-1)^n x^{2n}}{(2n)!}$ and hence $\frac{\cos x - 1}{x^2} = \sum_{n=1}^{\infty}$ *n*=1 $(-1)^n x^{2n-2}$ $\frac{y}{(2n)!}$. This is equal to $\sum_{n=1}^{\infty}$ *n*=0 $\frac{(-1)^{n-1}x^{2n}}{(2n+2)!}$. Why is this the MacLaurin series for $\frac{\cos x - 1}{x^2}$? The best answer is that by the calculations we just did, the series represents the function. The MacLaurin series for the power series is itself (that's a theorem) and since the series and the function are the same, the series is also the MacLaurin series for the function.

For (c),
$$
\cos t^2 = \sum_{n=0}^{\infty} \frac{(-1)^n t^{4n}}{(2n)!}
$$
, so $\int_0^x \cos t^2 dt = \int_0^x \sum_{n=0}^{\infty} \frac{(-1)^n t^{4n}}{(2n)!} dt = \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+1}}{(4n+1)(2n)!}$.

Math. 126 Quiz #10 April 16, 2002

Show that $\sum_{n=1}^{\infty}$ *n*=1 (−1)*ⁿ*+1 $\sqrt{n^2 + n}$ converges by *checking* the hypotheses of the Alternating

Series Test.

Then show the calcualtions needed to find an *m* such that

$$
0 < \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n^2 + n}} - \sum_{n=1}^{m} \frac{(-1)^{n+1}}{\sqrt{n^2 + n}} < 0.01
$$

..

$$
b_n = \frac{1}{\sqrt{n^2 + n}}.
$$

Since

$$
\lim_{n \to \infty} \sqrt{n^2 + n} = \infty,
$$

we have that

$$
\lim_{n \to \infty} \frac{1}{\sqrt{n^2 + n}} = 0.
$$

To check that $b_{n+1} \leq b_n$, ask: Is

$$
\frac{1}{\sqrt{(n+1)^2 + n + 1}} \le \frac{1}{\sqrt{n^2 + n}}
$$
?

After clearing fractions and squaring, we see that the inequality holds if

$$
n^2 + n \le (n+1)^2 + n + 1
$$

holds. This second inequality is clearly true. (Note: another way is to show that $\frac{d}{dn}b_n =$ $-\frac{1}{2}(n^2 + n)^{-\frac{3}{2}}(2n + 1)$ and this is clearly $\lt 0$ for $n \ge 1$.)

Recall that $|R_m| \leq b_{m+1}$. Thus, for the error calculation, we need to solve

$$
b_{m+1} < 0.01 \, .
$$

(Also, since

$$
0 < \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n^2 + n}} - \sum_{n=1}^{m} \frac{(-1)^{n+1}}{\sqrt{n^2 + n}},
$$

note that *m* must be odd since the remainder has the same sign as b_{m+1} .

Math. 126 Quiz #9 April 9, 2002

For each of the series below, do two things. First compute $\lim_{n\to\infty} a_n$ and then use this calculation to say if you are **certain** that $\sum_{n=1}^{\infty}$ *n*=1 *aⁿ* diverges or if the limit calculation does not suffice to say if the series converges or diverges. Just circle **diverges** or **can not tell** after the series for the second part of each question

A.
$$
a_n = \frac{1}{n!}
$$
:
\nRecall $n! = n(n-1)\cdots 2 \cdot 1$
\na. $\lim_{n \to \infty} a_n =$
\nb. $\sum_{n=1}^{\infty} a_n$ diverges can not tell

B.
$$
a_n = \frac{n}{1 + \sqrt{n}}
$$
:
a. $\lim_{n \to \infty} a_n =$

 $_{\rm b.}$ \sum_{α}^{∞} *n*=1 *aⁿ* **diverges can not tell** ..

For A we note $0 < \frac{1}{n!} = \frac{1}{n} \cdot \frac{1}{n-1} \cdots \frac{1}{2} \cdot \frac{1}{1} < \frac{1}{n}$ and since $\lim_{n \to \infty}$ 1 *n* $= 0$, the Squeeze Theorem promises $\lim_{n\to\infty}$ $\frac{1}{n!} = 0$. This tells us nothing about whether the series $\sum_{n=1}^{\infty}$ *n*=1 1 *n* ! converges. (Remark: It is correct that the series does converge, in fact to *e* − 1, but this calculation does not show it.) √*n* √*n*

For B we write
$$
\frac{n}{1 + \sqrt{n}} = \frac{\sqrt{n}}{\frac{1}{\sqrt{n}} + 1}
$$
 so $\lim_{n \to \infty} \frac{n}{1 + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n}}{\frac{1}{\sqrt{n}} + 1} = \frac{\infty}{0 + 1} = \infty$.
The Divergence Test shows that the series $\sum_{n=1}^{\infty} \frac{n}{1 + \sqrt{n}}$ diverges.

Math. 126 Quiz #8 April 2, 2002

Write an equation for the hyperbola which has foci at (3*,* 3) and (3*,* 11) and which has asymptotes $y = x + 4$ and $y = 10 - x$. What are the coordinates of the vertices?

..

The center is halfway between the foci so has coordinates $(3, 7)$. Thus $c = 4$ since it is the distance from the center to a focus.

The vertices of the hyperbola are on the line $x = 3$ since they lie on the line between the foci, so the equation has the form

$$
\frac{(y-7)^2}{a^2} - \frac{(x-3)^2}{b^2} = 1
$$

where $16 = c^2 = a^2 + b^2$.

The asymptotes have slope ± 1 from the slope–intercept form of the equation. The slopes are $\pm \frac{a}{b}$ for any hyperbola so $a = b$ and $16 = 2a^2$ so $a^2 = b^2 = 8$.

The vertices are a distance *a* from the center. Since $a^2 = 8$, $a = 2\sqrt{2}$ and the vertices are at $(3, 7 \pm 2\sqrt{2})$.

Math. 126 Quiz #7 March 26, 2002

- 1. Write down a definite integral which gives the length of the curve $x(t) = t^3 + 4t + 1$, $y(t) = t^4 + t^2$ for $0 \le t \le 5$. Do **NOT** attempt to evaluate either this integral or the integrals you will write down in parts 2 and 3.
- 2. Write down a definite integral which gives the surface area of the surface of revolution obtained by rotating the parameterized curve in 1 around the *x*–axis.
- 3. Write down a definite integral which gives the surface area of the surface of revolution obtained by rotating the parameterized curve in 1 around the *y*–axis.

..

We have the curve
$$
x(t) = t^3 + 4t + 1
$$
, $y(t) = t^4 + t^2$ for $0 \le t \le 5$.
Note $ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \sqrt{(3t^2 + 4)^2 + (4t^3 + 2t)^2} dt$

1. The definite integral which gives the length of this curve is

$$
L = \int_0^5 \sqrt{(3t^2 + 4)^2 + (4t^3 + 2t)^2} dt.
$$

2. The definite integral which gives the surface area of the surface of revolution obtained be rotating the parameterized curve around the x-axis is

$$
S = \int_0^5 2\pi (t^4 + t^2) \sqrt{(3t^2 + 4)^2 + (4t^3 + 2t)^2} dt
$$

since $t^4 + t^2$ is the distance from the point $(x(t), y(t))$ on the curve to the *x*-axis.

3. The definite integral which gives the surface area of the surface of revolution obtained be rotating the parameterized curve around the y-axis is

$$
S = \int_0^5 2\pi (t^3 + 4t + 1) \sqrt{(3t^2 + 4)^2 + (4t^3 + 2t)^2} dt
$$

since $t^3 + 4t + 1$ is the distance from the point $(x(t), y(t))$ on the curve to the *y*–axis.

Math. 126 Quiz #6 March 5, 2002

Solve the initial value problem

$$
x\frac{dy}{dx} = x^2 \cos x + y
$$

$$
y(\pi) = 1
$$

..

First, bring the equation to the canonical form:

(*)
$$
\frac{dy}{dx} + \left(-\frac{1}{x}\right)y = x\cos x
$$

Next compute the integrating factor:

$$
I(x) = e^{\int -\frac{1}{x} dx} = e^{-\ln x} = \frac{1}{x}
$$

Multiply the equation $(*)$ by the integrating factor, $I(x)$, to obtain:

$$
\left(\frac{1}{x}y\right)' = \cos x
$$

Integrate this:

$$
\frac{1}{x}y = \int \cos x \, dx = \sin x + C
$$

and thus

$$
y = x(\sin x + C)
$$

To determine *C*, compute $y(\pi)$ two ways:

$$
1 = y(\pi) = \pi(\sin(\pi) + C) = \pi C
$$

so $C = \frac{1}{\pi}$ and the solution is:

$$
y = x \left(\sin x + \frac{1}{\pi} \right)
$$

Math. 126 Quiz #5 February 26, 2002

Which improper integrals below converge and which diverge? Indicate your reasoning and be careful.

a)
$$
\int_0^{\infty} \frac{1}{\sqrt{x^3}} dx
$$

\nb) $\int_1^{\infty} \frac{\sin^2 x}{x^2} dx$
\n(a) $\int_0^{\infty} \frac{1}{\sqrt{x^3}} dx = \int_0^1 \frac{1}{\sqrt{x^3}} dx + \int_1^{\infty} \frac{1}{\sqrt{x^3}} dx$
\n $= \lim_{t \to 0+} \int_t^1 \frac{1}{\sqrt{x^3}} dx + \lim_{t \to \infty} \int_1^t \frac{1}{\sqrt{x^3}} dx$
\n $= \lim_{t \to 0+} \frac{-2}{\sqrt{x}} \Big|_t^1 + \lim_{t \to \infty} \frac{-2}{\sqrt{x}} \Big|_1^t$
\n $= -2 + \lim_{t \to 0+} \frac{2}{\sqrt{t}} + \lim_{t \to \infty} \frac{-2}{\sqrt{t}} + 2$
\n $= + \infty$

so \int^{∞} 0 1 $\sqrt{x^3}$ *dx* diverges.

b) Use the Comparison Theorem. Note $0 \leq$ $\sin^2 x$ $\frac{1}{x^2} \leq$ 1 $\frac{1}{x^2}$ since $-1 \le \sin x \le 1$. Evaluate \int^{∞} 1 1 $\frac{1}{x^2}dx = \lim_{t \to \infty} \int_1^t$ 1 $\frac{1}{x^2}dx = \lim_{t \to \infty}$ -1 *x* $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ *t* 1 $=$ lim *t*→∞ $\frac{-1}{t} + 1 = 1 + 0.$ Since \int_{1}^{∞} 1 $\frac{1}{x^2}$ *dx* converges and since $0 \leq$ $\sin^2 x$ $\frac{x^2}{x^2} \leq$ 1 $\frac{1}{x^2}$, \int^{∞} 1 $\sin^2 x$ $\frac{a}{x^2}$ *dx* converges.

Math. 126 Quiz #4 February 19, 2002

Expand

$$
\frac{2x^3 + 5x^2 + 5x + 5}{(x+1)^2(x^2+2)}
$$

using the method of partial fractions.

Remark: Indicate your setup clearly since half the points are for the correct setup.

..

Setup:

$$
\frac{2x^3 + 5x^2 + 5x + 5}{(x+1)^2(x^2+2)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{Cx+D}{x^2+2}
$$

Solve: Clear denominators by multiplying through by $(x + 1)^2(x^2 + 2)$:

(1)
$$
2x^3 + 5x^2 + 5x + 5 = A(x+1)(x^2+2) + B(x^2+2) + (Cx+D)(x+1)^2
$$

(2)
$$
=A(x^3+x^2+2x+2)+B(x^2+2)+C(x^3+2x^2+x)+D(x^2+2x+1)
$$

Set $x = -1$ in (1). This give $3 = 3B$ so $B = 1$. Setting $B = 1$ and collecting like terms in (2) gives the system of equations

$$
2 = A + C
$$

\n
$$
5 = A + 2C + D + 1
$$

\n
$$
5 = 2A + C + 2D
$$

\n(3)
\n
$$
(4)
$$

$$
5 = 2A + D + 2 \tag{5}
$$

Solve: $C = 2 - A$ from (3); $D = 3 - 2A$ from (5); so (4) becomes

$$
5 = 2A + (2 - A) + 2(3 - 2A) ;
$$

so $3A = 3$; $A = 1$. Then $C = 2 - A = 1$ and $D = 3 - 2A = 1$. Hence

$$
\frac{2x^3 + 5x^2 + 5x + 5}{(x+1)^2(x^2+2)} = \frac{1}{x+1} + \frac{1}{(x+1)^2} + \frac{x+1}{x^2+2}
$$

Math. 126 Quiz #3 February 12, 2002

Evaluate the integral

$$
\int \sec^2(\sqrt{x})\ dx\ .
$$

..

Hint: First do a substitution and then an integration by parts.

First, apply the substitution $t = \sqrt{x}$, so $x = t^2$ and $dx = 2t dt$ (or $dt = \frac{dx}{2\sqrt{x}}$, $dx = 2\sqrt{x} dt = 2t dt$). Then $\int \sec^2(\sqrt{x}) dx = \int \sec^2 t \cdot 2t dt = 2 \int t \sec^2 t dt$. To compute $\int t \sec^2 t \, dt$ use integration by parts with

$$
dv = \sec^2 t \, dt \quad v = \tan t
$$

$$
u = t \qquad du = dt
$$

 $\int t \sec^2 t \, dt = t \tan t - \int \tan t \, dt = t \tan t - \ln |\sec t| + C.$ Hence $\int \sec^2(\sqrt{x}) dx = 2(\sqrt{x} \tan(\sqrt{x}) - \ln|\sec(\sqrt{x})|)$ $+ C.$ **Remark:** Some people computed $\int \tan t$ by substitution instead of from memory. $\int \tan t \, dt = \int \frac{\sin t}{\cos t} \, dt = -\int \frac{du}{u} = -\ln|\cos t| + C = \ln|\sec t| + C$ after the substitution $u = \cos t$, $du = -\sin t \, dt$.

Math. 126 Quiz #2 January 29, 2002

1. Solve the equation $3^{2x} = 5$ for *x*. An answer involving ln of other numbers is fine.

2. Use logarithmic differentiation to find $\frac{dy}{dx}$ if

$$
y = \frac{(x^2 - 1)^{2.3}(x^3 + 2)^{1.1}}{(x^2 + 1)^{0.4}}.
$$

..

- 1. $\ln(3^{2x}) = \ln 5$ $2x \ln 3 = \ln 5$ $2x = \frac{\ln 5}{\ln 3}$
 $2x = \frac{\ln 5}{2 \ln 3}$
- 2. $\ln y = \ln \left(\frac{(x^2 1)^{2.3} (x^3 + 2)^{1.1}}{(x^2 + 1)^{0.4}} \right) = \ln \left((x^2 1)^{2.3} \right) + \ln \left((x^3 + 2)^{1.1} \right) \ln \left((x^2 + 1)^{0.4} \right)$ $\ln y = 2.3 \ln(x^2 - 1) + 1.1 \ln(x^3 + 2) - 0.4 \ln(x^2 + 1)$

Differentiating both sides,

$$
\frac{d}{dx}\left(\ln y\right) = \frac{d}{dx}\left(2.3\,\ln(x^2 - 1) + 1.1\,\ln(x^3 + 2) - 0.4\,\ln(x^2 + 1)\right) \text{ or}
$$
\n
$$
\frac{1}{y}\frac{dy}{dx} = \frac{2.3(2x)}{x^2 - 1} + \frac{1.1(3x^2)}{x^3 + 2} - \frac{0.4(2x)}{x^2 + 1} = \frac{(4.6)x}{x^2 - 1} + \frac{(3.3)x^2}{x^3 + 2} - \frac{(0.8)x}{x^2 + 1} \text{ So}
$$
\n
$$
\frac{dy}{dx} = \left(\frac{(x^2 - 1)^{2.3}(x^3 + 2)^{1.1}}{(x^2 + 1)^{0.4}}\right) \left(\frac{(4.6)x}{x^2 - 1} + \frac{(3.3)x^2}{x^3 + 2} - \frac{(0.8)x}{x^2 + 1}\right)
$$

Math. 126 Quiz #1 January 22, 2002

The function, $f(x) = x^3 - 3x^2 + x$ for *x* in the interval [−2*,* 0], has an inverse function because *f* is strictly increasing on this interval.

- a. What is the domain of the inverse function, f^{-1} ?
- b. What is the value of the derivative of f^{-1} for $x = -5$?

..

a. Domain (f^{-1}) = Range (f) . Since *f* is increasing on $[-2, 0]$ the range of *f* is $[f(-2), f(0)]$ which is $[-22, 0]$.

b. First note that $f^{-1}(5) = y$ if and only if $-5 = f(y)$, or $-5 = x^3 - 3x^2 + x$ or $0 = x^3 - 3x^2 + x + 5$. Since $-5 \in [-22, 0]$ there is precisely one solution to this equation in the interval $[-2, 0]$ and by trial and error you find that $f(-1) = -5$. In other words, $f^{-1}(-5) = -1$. Next compute $f'(x) = 3x^2 - 6x + 1$.

Then
$$
(f^{-1})'(-5) = \frac{1}{f'(f^{-1}(-5))} = \frac{1}{f'(-1)} = \frac{1}{10}
$$
.