\input epsf.def \gdef\Localbox#1{\epsfscale=2400\vtop to3.25in{\null\vskip -1in\epsfbox{:graphs:#1.eps}\vss}} \magnification1200\ \newbox\pbox \def\newp#1.{\setbox\pbox=\vbox\bgroup\noindent{\bf #1.}} \def\endp{\par\noindent\vrule width\hsize depth 0pt height .1pt\egroup \box\pbox\medskip} \def\pbreak{\par\noindent\egroup\box\pbox% \setbox\pbox=\vbox\bgroup\noindent} \def\frac#1#2{{{\textstyle#1}\over{\textstyle#2}}} \def\smfrac#1#2{{{\scritpstyle#1}\over{\scritpstyle#2}}} \def\leaderfill{\leaders\hbox to .5em{\hss.\hss}\hfil} \def\ans{\par\noindent\hbox to \hsize{\leaderfill} \par\medskip} \def\dd#1#2{{{\textstyle d\> #1}\over{\textstyle d#2}}} \def\smfrac#1#2{{{\scriptstyle#1}\over{\scriptstyle#2}}} \def\Lim{\displaystyle\lim} \def\Int{\displaystyle\int} \def\arcsec{\rm arcsec} \def\frac#1#2{{\displaystyle{{\textstyle#1}\over{\textstyle#2}}}} \newp 13. Note that you may divide numerator and denominator by $x$ first if you wish. If you do not divide by $x$ first, the form is $${A\over x}+{B\over x-1}+{C\over (x-1)^2}+{Dx+E\over x^2+1}+{Fx+G\over (x^2+1)^2}$$ If you do divide by $x$ first, then leave off the first term. \endp \newp 14. Since $b-a=4$, and $n=8$, we have ${\Delta x\over 3}={1\over 6}$. The approximation is therefore $${1\over6}\Bigg\lbrack f(0)+4f\biggl({1\over2}\biggr)+ 2f(1)+4f\biggl({3\over 2}\biggr)+ 2f(2)+4f\biggl({5\over 2}\biggr)+ 2f(3)+4f\biggl({7\over 2}\biggr)+f(4)\Biggr]$$ \endp \newp 15. We can use the technique of partial fractions to replace the given fraction by a sum of terms which we hope will be easier to integrate, so $${2x^2\over (x+1)(x^2+1)}= \frac{A}{x+1} + \frac{Bx+C}{x^2+1}$$ or $$2x^2 = A (x^2+1) + (Bx+C)(x+1)\ .\leqno(\ast)$$ One can equate coefficients and get the system $$\matrix{ x^2:&\hskip10pt&A + B = 2\cr x:&\hskip10pt&B + C = 0\cr constant:&\hskip10pt&A + C = 0\cr }$$ From the last two equations, $A=B$ and hence $2A=2$: $A=1$ and then $B=1$ and $C=-1$. OR, plug in $x=-1$ into $(\ast)$ to get $2(-1)^2 = A(2)$, or $A=1$ and then plug in $x=0$ to get $0 = 1 + C$ so $C=-1$ and then plug in $x=1$ to get $2 = 1(2) + (B-1)(2)$ or $B=1$. One can also do a judicious mixture of the two techniques. In any case, $\Int_0^1 {2x^2\over (x+1)(x^2+1)}\ dx = \Int_0^1 \frac{dx}{x+1} +\Int_0^1 \frac{x-1}{x^2+1}\ dx$. $\Int_0^1 \frac{dx}{x+1} = \ln\vert x+1\vert\ \Bigg\vert_0^1= \ln(2) - \ln(1) = \ln(2)$. \pbreak $\Int_0^1 \frac{x-1}{x^2+1}\ dx = \Int_0^1 \frac{x}{x^2+1}\ dx - \Int_0^1 \frac{dx}{x^2+1} = \frac12\ln \vert x^2+1\vert - \arctan(x) \Bigg\vert_0^1 = \frac12\ln(2)- \arctan(1) - \bigl(\ln(1) - \arctan(0)\bigr) $. Since $\arctan(1)=\frac{\pi}{4}$ and $\arctan(0)=0$, $\Int_0^1 \frac{x-1}{x^2+1}\ d x= \frac12 \ln(2) - \frac{\pi}{4}$ and so $\Int_0^1 {2x^2\over (x+1)(x^2+1)}\ dx = \frac 32 \ln(2) - \frac{\pi}{4}$. You can also do $\Int_0^1 \frac{x}{x^2+1}\ dx$ by substitution: $u = x^2 + 1$, $du = 2x\ dx$, \noindent so $\Int_0^1 \frac{x}{x^2+1}\ dx = \frac12 \Int_1^2 \frac{du}{u} = \ln\vert u\vert \ \Bigg\vert_1^2 = \frac12 \bigl( \ln(2) - \ln(0)\bigr) = \frac12 \ln2$. If you forgot $\Int_0^1 \frac{dx}{x^2+1}$ you can do a trig. substitution: $x = \tan \theta$, $dx = \sec^2\theta\ d\theta$, so $\Int_0^1 \frac{dx}{x^2+1} = \Int_0^{\pi/4} \frac{\sec^2\theta\ d\theta}{\sec^2\theta} = \Int_0^{\pi/4} d\theta = \frac{\pi}{4}$. \endp \newp 15. Divide through by x and rearrange terms in the equation as follows: $$ \frac{dy}{dx} + y(1+\frac{1}{x})=1\ $$ Now in standard notation we have that $P(x)=1+\frac{1}{x}$ and $Q(x)=1$. This yields $$\int P(x) dx = \int (1+\frac{1}{x})dx = x + \ln x$$ and $$I(x)= e^{\int P(x) dx} = e^{(x + \ln x)} = e^{x}* e^{\ln x}= x e^{x}\ .$$ The formula for a solution of the equation has the following form $$y(x) = \frac{1}{I(x)} (\int I(x) Q(x) \; dx +C)=\frac{1}{xe^x} \int xe^x \cdot 1 \; dx + \frac{C}{xe^x}\ .$$ Integrate by parts: $u=x$, $dv=e^x dx$. Then $du = dx$ and $v=e^x$ so $$ \int xe^x dx = xe^x -\int e^x dx = xe^x - e^x + C\ .$$ The solution is $$y(x) = \frac{1}{xe^x}(xe^x -e^x + C) = 1 - \frac{1}{x} + \frac{C}{xe^x}\ .$$ \endp \end