Multiple Choice

1.(5 pts.) Determine which curve is described by the following equation

$$r = 5\sin\theta$$
.

- (a) A hyperbola with foci on the y axis.
- (b) A non-circular ellipse with foci on the y axis.
- (c) A circle with center on the y axis.
- (d) A parabola with directrix perpendicular to the y axis.
- (e) A non-circular ellipse with center on the x axis.

2.(5 pts.) Find the length of a curve with polar equation: $r = 3^{(\theta+1)}, 0 \le \theta \le 2\pi$.

(a)
$$(3^{(2\pi+1)}-3)$$
 (b) $\frac{\sqrt{1+3^2}(3^{(2\pi+1)}-3)}{\ln 3}$
(c) $\sqrt{1+(\ln 3)^2}(3^{(2\pi+1)}-3)$ (c) $\sqrt{(\ln 3)^2-1}(3^{(2\pi+1)}-3)$

(c)
$$\frac{\sqrt{1 + (\ln 3)^2 (3^{(2\pi+1)} - 3)}}{\ln 3}$$
 (d) $\frac{\sqrt{(\ln 3)^2 - 1(3^{(2\pi+1)} - 1)}}{\ln 3}$

(e)
$$3(3^{(2\pi+1)}-1)$$

3.(5 pts.) Find the foci and asymptotes of the hyperbola $16x^2 - 9y^2 = 16$.

(a) foci are points
$$\left(\pm\frac{3}{2},0\right)$$
 and asymptotes are the lines $y=\frac{x}{2}$ and $y=-\frac{x}{2}$

(b) foci are points
$$\left(\pm\frac{5}{3},0\right)$$
 and asymptotes are the lines $y = \frac{x}{3}$ and $y = -\frac{x}{3}$

(c) foci are points
$$\left(\pm\frac{3}{5},0\right)$$
 and asymptotes are the lines $y = \frac{4x}{3}$ and $y = -\frac{4x}{3}$

(d) foci are points
$$\left(\pm\frac{1}{3},0\right)$$
 and asymptotes are the lines $y = \frac{5x}{3}$ and $y = -\frac{5x}{3}$

(e) foci are points
$$\left(\pm\frac{5}{3},0\right)$$
 and asymptotes are the lines $y = \frac{4x}{3}$ and $y = -\frac{4x}{3}$

4.(5 pts.) Find an equation for the ellipse with foci $(0, \pm 2)$ and vertices $(0, \pm 3)$.

(a)
$$\frac{x^2}{5} + \frac{y^2}{9} = 1$$
 (b) $\frac{x^2}{4} + \frac{y^2}{9} = 1$ (c) $\frac{(x-2)^2}{4} + \frac{y^2}{9} = 1$
(d) $\frac{x^2}{9} + \frac{y^2}{4} = 1$ (e) $\frac{x^2}{9} + \frac{y^2}{5} = 1$

5.(5 pts.) Which of the following series are convergent?

1)
$$\sum_{k=1}^{\infty} \frac{1}{2^k}$$
; 2) $\sum_{k=1}^{\infty} \frac{1}{k}$; 3) $\sum_{k=1}^{\infty} \frac{2}{\sqrt{k}}$; 4) $\sum_{k=1}^{\infty} \frac{1}{(k-1)^2}$; 5) $\sum_{k=1}^{\infty} \frac{1}{(4k)^2}$.

6.(5 pts.) Determine which of the following series are convergent.

1)
$$\sum_{k=1}^{\infty} \frac{1}{k!}$$
; 2) $\sum_{k=1}^{\infty} \frac{1}{ke^{-k}}$; 3) $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^3}$

7.(5 pts.) Find a power series representation for $\int_0^x \ln(1-t) dt$.

(a)
$$\sum_{n=1}^{\infty} \frac{-x^n}{n(n+1)}$$
 (b) $\sum_{n=1}^{\infty} \frac{x^n}{2^n}$

(c)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$
 (d) $\sum_{n=2}^{\infty} \frac{(-1)^n x^n}{n^2 - 1}$

(e)
$$\sum_{n=1}^{\infty} \frac{-x^n}{n+1}$$

8.(5 pts.) Find the interval of convergence of the following power series

$$\sum_{k=1}^{\infty} \frac{x^k}{2^k}$$

(a)
$$[-2,2)$$
 (b) $(-2,2]$ (c) $(-1,1]$ (d) $(-2,2)$ (e) $[-1,1]$

9.(5 pts.) Consider the polar equation $r = \frac{12}{1 - 2\cos\theta}$. Which of the following statements is correct?

- (a) The graph is an ellipse with vertices 8 units apart.
- (b) The graph is a conic section with distance from the center to the focus being 6 units.
- (c) The graph is an ellipse with directrix x = -6.
- (d) The graph is a hyperbola with directrix y = -6.
- (e) The graph is a hyperbola with vertices 8 units apart.

10.(5 pts.) For each of the following series determine whether it diverges or converges absolutely or conditionally.

$$1)\sum_{k=0}^{\infty}(-1)^{k}\frac{2}{k!}; \qquad 2)\sum_{k=0}^{\infty}(-1)^{(k+1)}\frac{k}{k^{2}+1}; \qquad 3)\sum_{k=0}^{\infty}(-1)^{(k+1)}\frac{k}{2k+1}.$$

(a) 1) conditionally convergent 2) conditionally convergent 3) absolutely convergent.

- (b) 1) absolutely convergent 2) conditionally convergent 3) divergent.
- (c) 1) absolutely convergent 2) absolutely convergent 3) divergent.
- (d) 1) absolutely convergent 2) conditionally convergent 3) conditionally convergent.
- (e) 1) divergent 2) conditionally convergent 3) conditionally convergent.

11.(5 pts.) Find a power series representation for $f(x) = \frac{5}{(1-x)^2}$ and determine its interval of convergence. Hint: You can obtain it by differentiating power series representation for $g(x) = \frac{5}{(1-x)}$.

(a)
$$\sum_{n=1}^{\infty} nx^n$$
, interval of convergence: $[-1, 1)$

(b)
$$\sum_{n=1}^{\infty} 5nx^{n-1}$$
, interval of convergence: (-1, 1)

(c)
$$\sum_{n=1}^{\infty} 5nx^{n-1}$$
, interval of convergence: $[-1, 1]$

(d)
$$\sum_{n=1}^{\infty} 5nx^{n-2}$$
, interval of convergence: $[-1,1)$

(e)
$$\sum_{n=1}^{\infty} 10nx^{n-1}$$
, interval of convergence: [-1, 1]

Partial Credit

You must show your work on the partial credit problems to receive credit!

12.(5 pts.) Sum the following series:

$$\sum_{k=1}^{\infty} e^{2-k}.$$

13.(10 pts.) Find the radius of convergence and interval of convergence of the following power series

$$\sum_{k=1}^{\infty} \frac{x^k}{k}$$

14.(15 pts.) Use the Comparison Test (not the Limit Comparison Test) to determine whether the following infinite series is convergent or divergent. Justify your answer.

$$\sum_{k=1}^{\infty} \frac{1}{2^k + k}$$

15.(15 pts.) Find the area of the region that lies inside both curves: $r = 2\sqrt{3}\cos\theta$ and $r = 2\sin\theta$.

Instructor: ANSWERS

Exam III April 17, 2003

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 70 minutes.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 6 pages of the test.

Good Luck!								
PLE	ASE MAR	K YOUR A	NSWERS W	VITH AN X	, not a circle!			
1.	(a)	(b)	(ullet)	(d)	(e)			
2.	(a)	(b)	(ullet)	(d)	(e)			
3.	(a)	(b)	(c)	(d)	(ullet)			
4.	(ullet)	(b)	(c)	(d)	(e)			
5.	(a)	(b)	(ullet)	(d)	(e)			
6.	(a)	(b)	(c)	(ullet)	(e)			
7.	(ullet)	(b)	(c)	(d)	(e)			
8.	(a)	(b)	(c)	(ullet)	(e)			
9.	(a)	(b)	(c)	(d)	(ullet)			
10.	(a)	(ullet)	(c)	(d)	(e)			
11.	(a)	(ullet)	(c)	(d)	(e)			

DO NOT	WRITE IN	THIS BOX!	
Total multiple	choice:		_

	12.	 -
	13.	 -
	14.	 -
	15.	
Total:		 -