12. This is a geometric series with the first term being $e^{2-1} = e$, and the ratio of terms being $\frac{e^{2-(k+1)}}{e^{2-k}} = \frac{1}{e}$. The sum is therefore $\frac{e}{1-\frac{1}{e}} = \frac{e^2}{e-1}$.

13. The ratio test may be used to determine the radius of convergence.

$$\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \frac{|x|^{k+1}}{k+1} \frac{k}{|x|^k} = |x|$$

Hence the radius of convergence is one.

The left endpoint of the interval of convergence is -1, and $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ converges by the Alternating Series Test. The right endpoint of the interval of convergence is +1, and $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges either

because it is the harmonic series, or because it is a *p*-series with p = 1. So the interval of convergence is [-1, 1).

14. To use the Comparison Test one has to find a series to which to compare the given one. Look at the *k*th term, $\frac{1}{2^k + k}$: this can easily be compared to

1) $\frac{1}{2^k + k} < \frac{1}{2^k}$ 2) $\frac{1}{2^k + k} < \frac{1}{k}$

If you guessed 2), then $\sum_{k=1}^{\infty} \frac{1}{k}$ is the harmonic series (or *p*-series with p = 1) and hence it diverges. But this says nothing about the original series.

Try 1): $\sum_{k=1}^{\infty} \frac{1}{2^k}$ is a geometric series with $r = \frac{1}{2} < 1$ and so it converges and now the Comparison Test says $\sum_{k=1}^{\infty} \frac{1}{2^k + k}$ converges.

It is also possible, although harder, to compare to $\sum_{k=1}^{\infty} \frac{1}{k^2}$. This is a *p*-series with p = 2 and so converges. Hence we would like to show $\frac{1}{2^k + k} < \frac{1}{k^2}$, at least for large *k*. Equivalently, $k^2 < 2^k + k$. To do this, let $f(x) = 2^x + x - x^2$. As $x \to \infty$, $f \to \infty$ so f(x) > 0 for all large enough *x*. In other words, $x^2 < 2^x + x$ for all large *x*.

15. Two curves have two points of intersection. First point is the origin: (0,0). In order to find second point we need to equate two expressions $2\sqrt{3}\cos\theta = 2\sin\theta$. This results in $\tan\theta = \sqrt{3}$. Lastly, we have $\theta = \frac{\pi}{3}$. The area of the domain bounded by two curves is given by the following formula

$$\frac{1}{2} \int_0^{\frac{\pi}{3}} (2\sin\theta)^2 \, d\theta + \frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (2\sqrt{3}\cos\theta)^2 \, d\theta = 2 \int_0^{\frac{\pi}{3}} \sin^2\theta \, d\theta + 6 \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos^2\theta \, d\theta.$$

After using the following substitutions: $\sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta)$ and $\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$ previous formula yields that

$$\int_0^{\frac{\pi}{3}} (1 - \cos 2\theta) \, d\theta + 3 \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (1 + \cos 2\theta) \, d\theta = \frac{5\pi}{6} - \sqrt{3} \, d\theta.$$