12. This is a geometric series with the first term being $e^{2-1}=e$, and the ratio of terms being $\frac{e^{2-(k+1)}}{e^{2-k}}=\frac{1}{e}$. The sum is therefore $\frac{e}{1-\frac{1}{e}}=\frac{e^{2}}{e-1}$.
13. The ratio test may be used to determine the radius of convergence.

$$
\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty} \frac{|x|^{k+1}}{k+1} \frac{k}{|x|^{k}}=|x|
$$

Hence the radius of convergence is one.
The left endpoint of the interval of convergence is -1 , and $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k}$ converges by the Alternating Series Test.

The right endpoint of the interval of convergence is +1 , and $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges either because it is the harmonic series, or because it is a p-series with $p=1$.

So the interval of convergence is $[-1,1)$.
14. To use the Comparison Test one has to find a series to which to compare the given one. Look at the k th term, $\frac{1}{2^{k}+k}$: this can easily be compared to

1) $\frac{1}{2^{k}+k}<\frac{1}{2^{k}}$
2) $\frac{1}{2^{k}+k}<\frac{1}{k}$

If you guessed 2), then $\sum_{k=1}^{\infty} \frac{1}{k}$ is the harmonic series (or p-series with $p=1$) and hence it diverges. But this says nothing about the original series.

Try 1): $\sum_{k=1}^{\infty} \frac{1}{2^{k}}$ is a geometric series with $r=\frac{1}{2}<1$ and so it converges and now the Comparison Test says $\sum_{k=1}^{\infty} \frac{1}{2^{k}+k}$ converges.

It is also possible, although harder, to compare to $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$. This is a p-series with $p=2$ and so converges. Hence we would like to show $\frac{1}{2^{k}+k}<\frac{1}{k^{2}}$, at least for large k. Equivaelently, $k^{2}<2^{k}+k$. To do this, let $f(x)=2^{x}+x-x^{2}$. As $x \rightarrow \infty, f \rightarrow \infty$ so $f(x)>0$ for all large enough x. In other words, $x^{2}<2^{x}+x$ for all large x.
15. Two curves have two points of intersection. First point is the origin: $(0,0)$. In order to find second point we need to equate two expressions $2 \sqrt{3} \cos \theta=2 \sin \theta$. This results in $\tan \theta=\sqrt{3}$. Lastly, we have $\theta=\frac{\pi}{3}$. The area of the domain bounded by two curves is given by the following formula

$$
\frac{1}{2} \int_{0}^{\frac{\pi}{3}}(2 \sin \theta)^{2} d \theta+\frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}(2 \sqrt{3} \cos \theta)^{2} d \theta=2 \int_{0}^{\frac{\pi}{3}} \sin ^{2} \theta d \theta+6 \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta
$$

After using the following substitutions: $\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$ and $\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta)$ previous formula yields that

$$
\int_{0}^{\frac{\pi}{3}}(1-\cos 2 \theta) d \theta+3 \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}(1+\cos 2 \theta) d \theta=\frac{5 \pi}{6}-\sqrt{3}
$$

