Multiple Choice

1.(5 pts.) Find the solution to the differential equation with initial value:

$$x^2y' + xy = 3x^3 + 1 \qquad y(1) = 0$$

- (a) $y = e^x(x^2 3x + 2)$ (b) $y = x^2 + \frac{\ln x}{x} \frac{1}{x}$ (c) $y = \ln(x + e^x 1) 1$.
- (d) $y = \frac{3x^4}{4} + x \frac{7}{4}$ (e) $y = e^x e$

2.(5 pts.) Which integral below computes the area above the x-axis and below the parameterized curve $x(t) = t - \sin(t) + e^t$ and $y(t) = \sin(t)$ for $0 \le t \le \pi$.

(a)
$$\int_0^{\pi} \cos(t)(1-\cos(t)+e^t) dt$$
 (b) $\int_0^{\pi} \cos(t)(1-\sin(t)+e^t) dt$

(b)
$$\int_0^{\pi} \cos(t) (1 - \sin(t) + e^t) dt$$

(c)
$$\int_0^{\pi} \sin(t)(1+2\cos(t)+e^t) dt$$
 (d) $\int_0^{\pi} \sin(t)(1-\sin(t)+e^t) dt$

(d)
$$\int_0^{\pi} \sin(t)(1-\sin(t)+e^t) dt$$

(e)
$$\int_0^{\pi} \sin(t)(1-\cos(t)+e^t) dt$$

3.(5 pts.) Which graph below is the graph of the polar equation $r = 3\sin(3\theta)$.

4.(5 pts.) Which integral below computes the length of the parameterized curve $x(t) = t + e^t$ and $y(t) = t^2 + e^t$ for $0 \le t \le \pi$.

(a)
$$\int_0^{\pi} \sqrt{t^2 + 2te^t + 2e^{2t} + t^4 + 2t^2e^t} dt$$
 (b)
$$\int_0^{\pi} \sqrt{t^2 + 6te^t + 2e^{2t} + 4t^2} dt$$

(c)
$$\int_0^{\pi} \sqrt{1 + 2e^t + 2e^{2t} + t^4 + 2t^2 e^t} dt$$
 (d)
$$\int_0^{\pi} \sqrt{1 + 2e^t + 2e^{2t} + 4t^2 + 4t e^t} dt$$

(e)
$$\int_0^{\pi} \sqrt{1 + 2e^t - 4t^2 - 4te^t} dt$$

5.(5 pts.) Which integral below is the area of the region inside the circle $r = 2\cos\theta$ and outside the circle $r = \cos \theta$.

(a)
$$\frac{1}{2} \int_0^{\pi} 5\cos^2 \theta \ d\theta$$
 (b) $\frac{1}{2} \int_0^{\pi} 3\cos^2 \theta \ d\theta$ (c) $\frac{1}{2} \int_0^{\pi} 4\cos^2 \theta \ d\theta$

(b)
$$\frac{1}{2} \int_0^{\pi} 3\cos^2 \theta \ d\theta$$

(c)
$$\frac{1}{2} \int_0^{\pi} 4\cos^2 \theta \ d\theta$$

(d)
$$\frac{1}{2} \int_0^{\pi} 3\sin^2\theta \ d\theta$$
 (e) $\frac{1}{2} \int_0^{\pi} 4\sin^2\theta \ d\theta$

(e)
$$\frac{1}{2} \int_0^{\pi} 4 \sin^2 \theta \ d\theta$$

6.(5 pts.) Find the length of the polar spiral $r = e^{\theta}$, $0 \le \theta \le 3$.

(a)
$$\sqrt{2}e^3 - 1$$

(b)
$$e^3 - 1$$
 (c) $e^3 + 1$

(c)
$$e^3 + 1$$

(d)
$$\sqrt{2} (e^3 + 1)$$
 (e) $\sqrt{2} (e^3 - 1)$

(e)
$$\sqrt{2} (e^3 - 1)$$

- **7.**(5 pts.) Which statement below is true about the series $\sum_{n=0}^{\infty} \frac{e^n}{n^2 + e^n}$
- $\lim_{n\to\infty} \frac{e^n}{n^2 + e^n}$ does not exist so the series converges. (a)
- $\lim_{n\to\infty} \frac{e^n}{n^2 + e^n} = 0 \text{ so the series diverges.}$ (b)
- $\lim_{n \to \infty} \frac{e^n}{n^2 + e^n} = 0 \text{ so the series converges.}$
- $\lim_{n\to\infty} \frac{e^n}{n^2 + e^n} = 1 \text{ so the series diverges.}$ (d)
- (e) $\lim_{n\to\infty} \frac{e^n}{n^2 + e^n} = 1$ so the series converges.
- **8.**(5 pts.) Sum the series $\sum_{n=2}^{\infty} \frac{2^n}{5^{2n}}$.
- (a) $\frac{4}{23 \cdot 25}$ (b) $\frac{92}{25}$ (c) $\frac{5}{3}$

9.(5 pts.) Which of the statements below is true about the three series

$$I) \sum_{n=1}^{\infty} \frac{(-1)^{n-2}}{n}$$

I)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$
 II) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$

III)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n!}$$

- (a) I) diverges, II) conditionally converges and III) absolutely converges.
- (b) They all conditionally converge.
- (c) I) absolutely converges, II) conditionally converges and III) diverges.
- (d) I) conditionally converges; II) and III) absolutely converge
- (e) They all absolutely converge.

10.(5 pts.) Consider the following two series:

I)
$$\sum_{n=2}^{\infty} \frac{1}{n^3 - 1}$$
 and II) $\sum_{n=2}^{\infty} \frac{1}{n^3}$.

Which statement below is true?

- (a) Series II) converges but series I) diverges.
- (b) None of the other statements are true.
- (c) Both series converge.
- (d) Both series diverge.
- (e) Series I) converges but series II) diverges.

11.(5 pts.) Which series below conditionally converges?

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{n^2}$$

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{n^2}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} e^n}{\sqrt[5]{n^2}}$ (c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt[5]{n^4}}$ (d) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt[5]{n^4}}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt[3]{n^4}}$$

Partial Credit

You must show your work on the partial credit problems to receive credit!

6

12.(15 pts.) Use the Integral Test to show that the series $\sum_{n=3}^{\infty} \frac{\ln n}{n}$ diverges.

Remark: Be sure to check that the Integral Test can be applied.

13.(15 pts.) Set up an integral which computes the shaded area. The polar equation of the region is $r = 1 - 2\cos\theta$.

Remarks: $\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$. The answer is the difference of two areas.

14.(15 pts.) Set up an integral which computes the surface area of the surface obtained by rotating the parameterized ellipse $x(t)=5+4\cos(t),\ y(t)=3\sin(t),\ 0\leq t\leq 2\pi$ about the y-axis .

Name:	ANSWERS	
Instructor:	ANSWERS	

Math 126 Exam III April 20, 2004

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 8 pages of the test.
- The backs of pages may be used if you need additional room to work on a problem.

Good Luck!

PLE	EASE MARK	YOUR AN	SWERS WI	TH AN X, n	ot a circle!
1.	(a)	(ullet)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(•)
3.	(ullet)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(ullet)	(e)
5.	(a)	(ullet)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(•)
7.	(a)	(b)	(c)	(ullet)	(e)
8.	(ullet)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(ullet)	(e)
10.	(a)	(b)	(ullet)	(d)	(e)
11.	(a)	(b)	(•)	(d)	(e)

DO NOT WRITE IN THIS BOX!						
Total multiple choice:						
12.						
13.						
14.						
Total:						