
Exam III
April 20, 2004

12. Use the Integral Test to show that the series
∑∞

n=3
ln(n)
n diverges.

Remark: Be sure to check that the Integral Test can be applied.
Solution: Seven points were allocated for the correct verification of the hypotheses in
the statement of the Integral Test; eight points were given for successfully applying the
theorem.

The appropriate function to use in the Integral Test is clearly f(x) = ln(x)/x since
f(n) = an for integer n. The hypotheses for using this test are:

(1 point) Continuity: ln(x) and 1/x are well–known to be continuous for all x > 0.
Clearly their product is continuous on [3,∞).
(1 point) Positivity: ln(x) is positive for x > 1, while 1/x is positive for x > 0.
Clearly their product is positive for [3,∞).
(5 points) Decreasing: The derivative of f is

f ′(x) =
(1/x)x− ln(x)1

x2 =
1− ln(x)

x2 .

Since the denominator is always positive for x 6= 0, f ′ is negative where 1− ln(x) < 0,
i.e. for x > e. Since e < 3, f ′ is negative on [3,∞) and f is decreasing for this interval.

The Integral Test states that if
∫∞
3
f(x) dx diverges then so does

∑∞
n=3 f(n), which is∑∞

n=3 an. If we let u = ln(x) then du = (1/x)dx and∫ ∞

3

ln(x)
x

dx =
∫
u du =

1
2

(ln(x))2
∣∣∣∣x=∞

x=3

which diverges since ln(x) →∞ as x→∞.
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13. Set up an integral which computes the shaded area. The polar equation of the region
is r = 1− 2 cos θ.

Remarks: cos
(
π
3

)
= 1

2. The answer is the difference of two areas.

-3 -2 -1

-2

-1

1

2

This was a complicated prob-
lem to grade because there are
so many correct answers. Many
people computed the shaded area
above the x–axis and doubled it,
which got full marks if done cor-
rectly. Others computed the area
directly. The crux of the prob-
lem is to work out intervals for θ
which sweep out the various pieces.

From the first remark, θ =
π
3 is one of the angles where the
curve goes through the pole (the
origin). As θ increases, it gets
to π

2 which turns out to be the
point (0, 1) in Cartesian coordi-
nates. When θ = π we are at
the point (−3, 0). By the time
θ = 2π− π

3 = 5π
3 , we have traced

the outside curve once and hence

the integral 1
2

∫ 5π
3

π
3

(1− 2 cos θ)2 dθ computes the total area inside the outer curve.

As θ continues to increase past 5π
3 , we begin to trace the inside loop. At θ = 2π we

are at (−1, 0) and by θ = 2π + π
3 = 7π

3 we have traced out the entire inner loop so one
answer is

1
2

∫ 5π
3

π
3

(1− 2 cos θ)2 dθ − 1
2

∫ 7π
3

5π
3

(1− 2 cos θ)2 dθ

Because the curve is periodic with period 2π the limits cab be changed: a popular

choice was to write the area of the inner loop as 1
2

∫ π
3

−π
3

(1− 2 cos θ)2 dθ.

Another approach is to start with 1
2

∫ 2π

0

(1− 2 cos θ)2 dθ. This is the area inside the

outer curve plus the area inside the inner curve so

1
2

∫ 2π

0

(1− 2 cos θ)2 dθ − 2 · 1
2

∫ 7π
3

5π
3

(1− 2 cos θ)2 dθ

also computes the requested area.
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Computing the area above the x–axis works out as follows. From π
3 to π the top half

of the outer curve is traced: from 0 to π
3 the bottom loop of the inner curve is traced.

Hence another answer is

2

(
1
2

∫ π

π
3

(1− 2 cos θ)2 dθ − 1
2

∫ π
3

0

(1− 2 cos θ)2 dθ

)

One can also do

2

(
1
2

∫ π

0

(1− 2 cos θ)2 dθ − 2 · 1
2

∫ π
3

0

(1− 2 cos θ)2 dθ

)

14. For revolution about the y-axis, surface area is

A =
∫

2πxds =
∫ 2π

0

2πx(t)

√(
dx

dt

)2

+
(
dy

dt

)2

dt .

dx
dt

= d
dt

(5 + 4 cos t) = −4 sin t and dy
dt

= d
dt

(3 sin t) = 3 cos t. Thus

A =
∫ 2π

0

2π(5 + 4 cos t)
√

(−4 sin t)2 + (3 cos t)2 dt

=
∫ 2π

0

2π(5 + 4 cos t)
√

16 sin2 t+ 9 cos2 t dt.
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