Exam III
April 20, 2004
12. Use the Integral Test to show that the series $\sum_{n=3}^{\infty} \frac{\ln (n)}{n}$ diverges.

Remark: Be sure to check that the Integral Test can be applied.
Solution: Seven points were allocated for the correct verification of the hypotheses in the statement of the Integral Test; eight points were given for successfully applying the theorem.

The appropriate function to use in the Integral Test is clearly $f(x)=\ln (x) / x$ since $f(n)=a_{n}$ for integer n. The hypotheses for using this test are:
(1 point) Continuity: $\ln (x)$ and $1 / x$ are well-known to be continuous for all $x>0$.
Clearly their product is continuous on $[3, \infty)$.
(1 point) Positivity: $\ln (x)$ is positive for $x>1$, while $1 / x$ is positive for $x>0$. Clearly their product is positive for $[3, \infty)$.
(5 points) Decreasing: The derivative of f is

$$
f^{\prime}(x)=\frac{(1 / x) x-\ln (x) 1}{x^{2}}=\frac{1-\ln (x)}{x^{2}}
$$

Since the denominator is always positive for $x \neq 0, f^{\prime}$ is negative where $1-\ln (x)<0$, i.e. for $x>e$. Since $e<3, f^{\prime}$ is negative on $[3, \infty)$ and f is decreasing for this interval.

The Integral Test states that if $\int_{3}^{\infty} f(x) d x$ diverges then so does $\sum_{n=3}^{\infty} f(n)$, which is $\sum_{n=3}^{\infty} a_{n}$. If we let $u=\ln (x)$ then $d u=(1 / x) d x$ and

$$
\int_{3}^{\infty} \frac{\ln (x)}{x} d x=\int u d u=\left.\frac{1}{2}(\ln (x))^{2}\right|_{x=3} ^{x=\infty}
$$

which diverges since $\ln (x) \rightarrow \infty$ as $x \rightarrow \infty$.
13. Set up an integral which computes the shaded area. The polar equation of the region is $r=1-2 \cos \theta$.

Remarks: $\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$. The answer is the difference of two areas.

This was a complicated problem to grade because there are so many correct answers. Many people computed the shaded area above the x-axis and doubled it, which got full marks if done correctly. Others computed the area directly. The crux of the problem is to work out intervals for θ which sweep out the various pieces.

From the first remark, $\theta=$ $\frac{\pi}{3}$ is one of the angles where the curve goes through the pole (the origin). As θ increases, it gets to $\frac{\pi}{2}$ which turns out to be the point $(0,1)$ in Cartesian coordinates. When $\theta=\pi$ we are at the point $(-3,0)$. By the time $\theta=2 \pi-\frac{\pi}{3}=\frac{5 \pi}{3}$, we have traced the integral $\frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{5 \pi}{3}}(1-2 \cos \theta)^{2} d \theta$ computes the total area inside the outer curve.

As θ continues to increase past $\frac{5 \pi}{3}$, we begin to trace the inside loop. At $\theta=2 \pi$ we are at $(-1,0)$ and by $\theta=2 \pi+\frac{\pi}{3}=\frac{7 \pi}{3}$ we have traced out the entire inner loop so one answer is

$$
\frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{5 \pi}{3}}(1-2 \cos \theta)^{2} d \theta-\frac{1}{2} \int_{\frac{5 \pi}{3}}^{\frac{7 \pi}{3}}(1-2 \cos \theta)^{2} d \theta
$$

Because the curve is periodic with period 2π the limits cab be changed: a popular choice was to write the area of the inner loop as $\frac{1}{2} \int_{\frac{-\pi}{3}}^{\frac{\pi}{3}}(1-2 \cos \theta)^{2} d \theta$.

Another approach is to start with $\frac{1}{2} \int_{0}^{2 \pi}(1-2 \cos \theta)^{2} d \theta$. This is the area inside the outer curve plus the area inside the inner curve so

$$
\frac{1}{2} \int_{0}^{2 \pi}(1-2 \cos \theta)^{2} d \theta-2 \cdot \frac{1}{2} \int_{\frac{5 \pi}{3}}^{\frac{7 \pi}{3}}(1-2 \cos \theta)^{2} d \theta
$$

also computes the requested area.

Computing the area above the x-axis works out as follows. From $\frac{\pi}{3}$ to π the top half of the outer curve is traced: from 0 to $\frac{\pi}{3}$ the bottom loop of the inner curve is traced. Hence another answer is

$$
2\left(\frac{1}{2} \int_{\frac{\pi}{3}}^{\pi}(1-2 \cos \theta)^{2} d \theta-\frac{1}{2} \int_{0}^{\frac{\pi}{3}}(1-2 \cos \theta)^{2} d \theta\right)
$$

One can also do

$$
2\left(\frac{1}{2} \int_{0}^{\pi}(1-2 \cos \theta)^{2} d \theta-2 \cdot \frac{1}{2} \int_{0}^{\frac{\pi}{3}}(1-2 \cos \theta)^{2} d \theta\right)
$$

14. For revolution about the y-axis, surface area is

$$
\begin{array}{r}
A=\int 2 \pi x d s=\int_{0}^{2 \pi} 2 \pi x(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
\frac{d x}{d t}=\frac{d}{d t}(5+4 \cos t)=-4 \sin t \text { and } \frac{d y}{d t}=\frac{d}{d t}(3 \sin t)=3 \cos t . \text { Thus } \\
A=\int_{0}^{2 \pi} 2 \pi(5+4 \cos t) \sqrt{(-4 \sin t)^{2}+(3 \cos t)^{2}} d t \\
=\int_{0}^{2 \pi} 2 \pi(5+4 \cos t) \sqrt{16 \sin ^{2} t+9 \cos ^{2} t} d t
\end{array}
$$

