
Math. 126 Quiz #1 January 21, 2003

1. Using your technique from Chapter 4, show that the function

f(x) = x3 − 3x2 − 9x + 1

is decreasing on the interval [ −1, 3 ].
2. Let g(x) be the inverse function for f(x), x in [ −1, 3 ]. The equation f(x) = 1

has solutions x = 0 and x = 3±3
√

5
2 . Use this information to find g′(1).

3. Write an equation for the tangent line to the graph of y = g(x) at the point x = 1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Compute f ′(x) = 3x2−6x−9. f ′(x) = 0 if and only if 3(x2−2x−3) = 3(x−3)(x+1) =
0 if and only if x = 3 or x = −1. The function f ′ is continuous everywhere, so f ′ < 0
on (−1, 3). Hence f is decreasing on [−1, 3].

2. Since f(x) = 1 has solutions, x = 0 and x = 3±3
√

5
2 , g(1) is either 0 or one of 3±3

√
5

2 .
Since 0 is in the interval [−1, 3], g(1) = 0. (Note: You weren’t asked but the theory

also guarantees that neither 3±3
√

5
2 is in the interval [−1, 3].)

The basic formula says

g′(1) =
1

f ′(0)

and f ′(0) = 3 · 02 − 6 · 0 − 9 = −9, so g′(1) = 1
−9 = − 1

9 .

3. The tangent line to the graph of g(x) and x = 1 has slope − 1
9 and goes through the

point
(
1, g(1)

)
= (1, 0), so an equation for it is y − 0 = − 1

9 (x− 1).
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1. Solve the equation 8x
2

= 9 for x. An answer such as ln(6)−
√

ln 8 or whatever is
fine.

2. Find the derivative with respect to x of (2x)3x .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Take ln of both sides: ln
(
8x

2)
= ln(9). Simplify the left hand side: x2 · ln(8) = ln(9),

or x2 = ln(9)
ln(8) or x = ±

√
ln(9)
ln(8) .

2. Easiest is to let y = (2x)3x and use logarithmic differentiation: ln y = ln
(
(2x)3x

)
=

(3x) ln(2x). Hence y′

y = (3) ln(2x) + (3x)
(

2
2x

)
= 3 ln(2x) + 3. Hence y′ = y

(
3 ln(2x) +

3
)

= (2x)3x
(
3 ln(2x) + 3

)
.

Another way:

(2x)3x = e
3x ln(2x)

, so d (2x)3x

dx = e
3x ln(2x) d3x ln(2x)

dx , or d (2x)3x

dx = e
3x ln(2x)(

(3) ln(2x) +

(3x) 2
2x

)
= (2x)3x

(
3 ln(2x) + 3

)
.
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A charged rod of length L beginning at the origin and lying along the x–axis produces an
electric field at a point (a, b) in the plane given by the integral

E(a, b) =

∫ L−a

−a

λ b

4πε
0

(
x2 + b2

)3/2 dx

where λ is the charge density per unit length on the rod and ε0 is the free space permittivity.
Assume that the charge density, λ, and the free space permittivity, ε0 , are constant.

Evaluate the integral to determine an expression for the electric field in terms of a, b,
L, λ and ε

0 .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We make the substitution x = b tan θ, −π
2 < θ < π

2 , so that x2 + b2 = b2
(
tan2 θ+1

)
=

b2 sec2 θ. Then dx
dθ = b sec2 θ so dx = b sec2 θdθ.

We want to change the limits of integration in this definite integral so, since θ =
arctan

(
x
b

)
, let θ1 = arctan

(−a
b

)
and θ2 = arctan

(
L−a
b

)
. If you are writing this out by

hand instead of cut-and-paste, let c = λ
4πε0

. Then E(a, b) =

∫ θ2

θ1

cb(
b2 sec2 θ

)3/2 b sec2 θ dθ,

or E(a, b) =

∫ θ2

θ1

cb2

|b|3
sec2 θ

sec3 θ
dθ. Since b may be positive or negative, we must use |b| where

we did, but since θ = arctan
(
x
b

)
, it follows that θ is between −π

2 and +π
2 and hence

sec θ > 0, so we do not need the absolute value of sec θ.

Hence E(a, b) =
c

|b|

∫ θ2

θ1

1

sec θ
dθ =

c

|b|

∫ θ2

θ1

cos θ dθ =
c

|b| sin θ

∣∣∣∣
θ2

θ1

=
c

|b|
(
sin θ2 − sin θ1

)
.

Analyzing the triangles with b > 0 shows that sin θ1 =
−a√

a2 + b2
and sin θ2 =

L− a√
(L− a)2 + b2

. Hence

E(a, b) =
λ

4πε0 b

(
L− a√

(L− a)2 + b2
+

a√
a2 + b2

)
.

b

-aa
2 +b

2

√

θ1

b

L-a(L-a)
2 +b

2

√

θ2



Since clearly E(a,−b) = −E(a, b), the formula holds for all b �= 0. For b = 0, clearly
E(a, 0) = 0.
Remark: If 0 ≤ a ≤ L and b = 0 then the formula is probably physically meaningless
since we are actually on the rod. However, if a < 0 or a > L and b = 0, then E(a, 0) = 0
probably is physically meaningful. You can use l’Hopital’s Rule to check that for a < 0 or
a > L, lim

b→0
E(a, b) = 0.
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Find the centroid of the
shaded region.

-1

1

π/2 π 3π/2

y=sin(x)

y=cos(x)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The mass, or equivalently the area, is given by

A =

∫ b

a

(sinx− cosx)dx .

where a is the x–coordinate of the left–hand intersection point and b is the x–coordinate
of the right–handed intersection point.

The point a satisfies sin(a) = cos(a) or tan(a) = 1 or a = π
4 . The point b satisfies the

same equation and so b = a + π or b = 5π
4 . You could also eye–ball the points from the

graph.

Hence A = − cos(x) − sin(x)
∣∣∣ 5π

4

π
4

= −
(
−

√
2

2

)
−

(
−

√
2

2

)
−

(
−

√
2

2 −
√

2
2

)
= 4

√
2

2 = 2
√

2.

The moment about the x–axis, Mx is given by

Mx =

∫ b

a

sinx + cosx

2
(sinx− cosx)dx



where a and b are as above. Now Mx = 1
2

∫ b

a

sin2(x) − cos2(x) dx =
1

2

∫ b

a

− cos(2x)

2
dx =

−1

8
sin(2x)

∣∣∣b
a

=
−1

8
sin

(5π

2

)
− −1

8
sin

(π
2

)
=

−1

8
(1) − −1

8
(1) = 0.

The moment about the y–axis, My is given by

My =

∫ b

a

x(sinx− cosx)dx

where a and b are as above. Integrate by parts: dv = (sinx − cosx)dx, u = x, so

v = − cosx − sinx and du = dx so My = −(cosx + sinx)x
∣∣∣b
a

+

∫ b

a

sinx + cosx dx =

−(cosx + sinx)x
∣∣∣b
a
− cosx + sinx

∣∣∣b
a

= − cosx(x + 1) + sinx(1 − x)
∣∣∣b
a

= −2x cosx
∣∣∣b
a

since

sin(x) = cos(x) for x = a and for x = b.

Hence My = −2
(5π

4

)(
−
√

2

2

)
+ 2

(π
4

)(√2

2

)
=

6π
√

2

4
=

3π
√

2

2
.

Therefore, the center of mass is at
(
x̄, ȳ

)
=

(My

A
,
Mx

A

)
=

( 3π
√

2
2

2
√

2
, 0
)

=
(3π

4
, 0
)
.

Looking at the graph, this is not unreasonable.
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Solve the initial value problem

x
dy

dx
= x2tanx + y

y
(
π/4

)
= 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The equation is linear but not in standard form. The standard form is

dy

dx
+

−1

x
y = x tanx .

Hence P (x) = 1

x and
∫
Pdx = − ln |x| + C. Hence we may use I = e− ln |x| = 1

|x| as an

integrating factor, and even use I = 1
x .

Check:
d 1

xy

dx = 1
xy

′ − 1
x2 y = 1

x

(
y′ − 1

xy
)
, so I = 1

x is an integrating factor.

Hence y = 1
I

∫
I ·Qdx, where Q(x) = x tanx, and I ·Q = tanx. Therefore

∫
I ·Qdx =∫

tanxdx = ln | sec(x)| + C and 1
xy = ln | sec(x)| + C, or y = x(ln | secx| + C).

To solve the initial value problem, note y(π/4) = 1 and y(π/4) = π
4 (ln | sec(π/4)|+C),

so 1 = π
4 (ln

√
2 + C), or C = 4

π − ln
√

2. Hence

y = x
(
ln | secx| + 4

π
− ln

√
2
)
.
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Find the area of the region inside the polar curve r = 3 cos θ and outside the polar curve
r = 2 − cos θ.

-1

-2

1

2

1 2 3-1-2-3

π/3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have shaded the required region. We start by locating the initial and terminal
angles. We hope that they satisfy the equation 3 cos θ = 2 − cos θ. This equation is
equivalent to 4 cos θ = 2 or cos θ = 1

2 and hence θ = ±π
3 . We are looking for two angles

and we have found two angles.



It now follows that the area is given by

A =
1

2

∫ π
3

−π
3

((
3 cos θ

)2 − (
2 − cos θ

)2)
dθ

=
1

2

∫ π
3

−π
3

(
9 cos2 θ −

(
4 − 4 cos θ + cos2 θ

))
dθ

=
1

2

∫ π
3

−π
3

(
8 cos2 θ + 4 cos θ − 4

)
dθ .

∫ π
3

−π
3

1 dθ =
2π

3
;

∫ π
3

−π
3

cos θ dθ = sin θ
∣∣∣π

3

−π
3

=
2
√

3

2
=

√
3 ;

∫ π
3

−π
3

cos2 θ dθ =

∫ π
3

−π
3

1 + cos(2θ)

2
dθ =

θ

2
+

sin(2θ)

4

∣∣∣π
3

−π
3

= 2
π

6
+ 2

√
3

2

4
=

π

3
+

√
3

4
.

Hence

A = 4
(π

3
+

√
3

4

)
+ 2

(√
3
)
− 2

(2π

3

)
= 3

√
3 .
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Consider the ellipse in the xy-plane which has foci at (3, 2) and (3, 8) with eccentricity 1
2 .

1. What are the coordinates of the center?
2. What are the coordinates of the vertices?
3. What is the equation of the ellipse?
4. What are the equations of the directrixes?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The center is at
(

3+3
2 , 2+8

2

)
= (3, 5). The major axis is parallel to the y axis.

The distance from the center to a focus is c = 8 − 5 = 3 or c = 5 − 2 = 3.

Since e =
c

a
,

1

2
=

3

a
, so a = 6: the vertices are at (3, 5 ± 6) or at (3, 11) and (3,−1).

Since b2 = a2 − c2 for an ellipse, b2 = 36 − 9 = 27. An equation for our ellipse is

(x− 3)2

27
+

(y − 5)2

36
= 1 .

The distance from the vertex (3,−1) to the focus (3, 2) is 3. If k is the distance from

the vertex (3,−1) to the associated directrix, then e =
3

k
, so k = 6 and so the directixes

are the lines y = −1 − 6 = −7 and y = 11 + 6 = 17.
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Which of the following series converge and which diverge? Why?

A.

∞∑
n=1

1

n !
:

Recall n ! = n(n− 1) · · · 2 · 1

B.

∞∑
n=2

n

1 +
√
n

:

C.
∞∑

n=2

(2n

3n
+

1

n2

)
:

D.
∞∑

n=2

(πn

3n
+

1

n2

)
:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A. By the Ratio test lim
n→∞

∣∣∣∣∣
1

(n+1)!

1
n!

∣∣∣∣∣ = lim
n→∞

1

n + 1
= 0 and 0 < 1 so series converges.

B. lim
n→∞

n

1 +
√
n

= lim
n→∞

√
n

1√
n

+ 1
= ∞. Since limn→∞ an �= 0, the series diverges. An

equally good calculation is lim
n→∞

n

1 +
√
n

= lim
n→∞

n√
n

= lim
n→∞

√
n = ∞.

C.

∞∑
n=2

2n

3n
is a geometric series with r = 2

3 < 1 and so converges:
∞∑

n=2

1

n2
is a p–series

with p = 2 > 1 and so it converges. Therefore the sum of the two convergent series
converges.

D. This time

∞∑
n=2

πn

3n
is a geometric series with r = π

2 > 1 and so it diverges. This

suggests using the Comparison Test: πn

2n < πn

3n + 1
n2 and

∞∑
n=2

πn

3n
diverges: therfore

∞∑
n=2

(πn

3n
+

1

n2

)
diverges.
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Consider the function f(x) defined by the power series

f(x) =

∞∑
n=1

xn

n
3
2

1. Find the interval of convergence of the power series for f .



2. Write down the power series for f ′(x).
3. Find the interval of convergence of the power series for f ′.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Via the Ratio Test:

∣∣∣∣∣
xn+1

(n+1)3/2

xn

n3/2

∣∣∣∣∣ =

∣∣∣∣ xn+1n3/2

xn(n + 1)3/2

∣∣∣∣ = |x| n3/2

(n + 1)3/2
.

In the limit, lim
n→∞

|x| n3/2

(n + 1)3/2
= |x|, since we can compute the limit of an algebraic

quotient by examining the highest power of n in the numerator and the highest power of
n in the denominator. It follows that the radius of convergence of this power series is 1.

When x = ±1,
∞∑

n=1

∣∣∣∣ (±1)n

n
3
2

∣∣∣∣ is a p–series with p = 3
2 > 1 and hence convergent. Thus the

original two series,

∞∑
n=1

(±1)n

n
3
2

, are absolutely convergent, hence convergent. Therefore the

domain of f is the interval [−1, 1] (and the convergence is absolute in the entire interval).

2. By our theorem, f ′(x) =
∞∑

n=1

nxn−1

n
3
2

=
∞∑

n=1

xn−1

n
1
2

or
∞∑

n=0

xn

(n + 1)
1
2

.

3. The radius of convergence for f ′ is the same as for f , and hence it is 1. This time

the two series we need to examine are
∞∑

n=0

(±1)n

(n + 1)
1
2

. When x = +1, we have a p–

series with p = 1
2 < 1 so the series diverges. When x = −1 the series is alternating

(obvious), the terms go to 0 (also obvious) and the terms are decreasing ( g(x) = x−1/2,
so g′(x) = − 1

2x
−3/2 and when x > 0, x−3/2 > 0 so g′(x) < 0 and the terms are

decreasing). Hence this series converges conditionally and the domain of f ′(x) is
[−1, 1).


