Math. 126 Quiz #1January 21, 2003

1. Using your technique from Chapter 4, show that the function

$$f(x) = x^3 - 3x^2 - 9x + 1$$

is decreasing on the interval [-1,3].

- 2. Let g(x) be the inverse function for f(x), x in [-1,3]. The equation f(x) = 1has solutions x = 0 and $x = \frac{3\pm 3\sqrt{5}}{2}$. Use this information to find g'(1). 3. Write an equation for the tangent line to the graph of y = g(x) at the point x = 1.

- 1. Compute $f'(x) = 3x^2 6x 9$. f'(x) = 0 if and only if $3(x^2 2x 3) = 3(x 3)(x + 1) = 3(x 3)(x 3)(x$ 0 if and only if x = 3 or x = -1. The function f' is continuous everywhere, so f' < 0on (-1, 3). Hence f is decreasing on [-1, 3].
- 2. Since f(x) = 1 has solutions, x = 0 and $x = \frac{3\pm 3\sqrt{5}}{2}$, g(1) is either 0 or one of $\frac{3\pm 3\sqrt{5}}{2}$. Since 0 is in the interval [-1,3], g(1) = 0. (Note: You weren't asked but the theory also guarantees that neither $\frac{3\pm 3\sqrt{5}}{2}$ is in the interval [-1,3].)

The basic formula says

$$g'(1) = \frac{1}{f'(0)}$$

and $f'(0) = 3 \cdot 0^2 - 6 \cdot 0 - 9 = -9$, so $g'(1) = \frac{1}{-9} = -\frac{1}{9}$.

3. The tangent line to the graph of g(x) and x = 1 has slope $-\frac{1}{9}$ and goes through the point (1, g(1)) = (1, 0), so an equation for it is $y - 0 = -\frac{1}{9}(x - 1)$.

Math. 126 Quiz #2January 28, 2003

- 1. Solve the equation $8^{x^2} = 9$ for x. An answer such as $\ln(6) \sqrt{\ln 8}$ or whatever is fine.
- 2. Find the derivative with respect to x of $(2x)^{3x}$.
- 1. Take ln of both sides: $\ln(8^{x^2}) = \ln(9)$. Simplify the left hand side: $x^2 \cdot \ln(8) = \ln(9)$, or $x^2 = \frac{\ln(9)}{\ln(8)}$ or $x = \pm \sqrt{\frac{\ln(9)}{\ln(8)}}$.
- 2. Easiest is to let $y = (2x)^{3x}$ and use logarithmic differentiation: $\ln y = \ln((2x)^{3x}) =$ $(3x)\ln(2x)$. Hence $\frac{y'}{y} = (3)\ln(2x) + (3x)\left(\frac{2}{2x}\right) = 3\ln(2x) + 3$. Hence $y' = y\left(3\ln(2x) + 3\right)$ $3) = (2x)^{3x} (3\ln(2x) + 3).$ Another way: $(2x)^{3x} = e^{3x\ln(2x)}, \text{ so } \frac{d(2x)^{3x}}{dx} = e^{3x\ln(2x)} \frac{d3x\ln(2x)}{dx}, \text{ or } \frac{d(2x)^{3x}}{dx} = e^{3x\ln(2x)} \left((3)\ln(2x) + (3x)\frac{2}{2x}\right) = (2x)^{3x} \left(3\ln(2x) + 3\right).$

Math. 126 Quiz #3 February 11, 2003

A charged rod of length L beginning at the origin and lying along the x-axis produces an electric field at a point (a, b) in the plane given by the integral

$$E(a,b) = \int_{-a}^{L-a} \frac{\lambda \, b}{4\pi \varepsilon_{\scriptscriptstyle 0} \left(x^2 + b^2\right)^{3/2}} \, dx$$

where λ is the charge density per unit length on the rod and ε_0 is the free space permittivity. Assume that the charge density, λ , and the free space permittivity, ε_0 , are constant.

Evaluate the integral to determine an expression for the electric field in terms of a, b, L, λ and ε_0 .

We make the substitution $x = b \tan \theta$, $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, so that $x^2 + b^2 = b^2 (\tan^2 \theta + 1) = b^2 \sec^2 \theta$. Then $\frac{dx}{d\theta} = b \sec^2 \theta$ so $dx = b \sec^2 \theta d\theta$.

 $b^2 \sec^2 \theta$. Then $\frac{dx}{d\theta} = b \sec^2 \theta$ so $dx = b \sec^2 \theta d\theta$. We want to change the limits of integration in this definite integral so, since $\theta = \arctan(\frac{x}{b})$, let $\theta_1 = \arctan(\frac{-a}{b})$ and $\theta_2 = \arctan(\frac{L-a}{b})$. If you are writing this out by

hand instead of cut-and-paste, let $c = \frac{\lambda}{4\pi\varepsilon_0}$. Then $E(a,b) = \int_{\theta_1}^{\theta_2} \frac{cb}{\left(b^2 \sec^2\theta\right)^{3/2}} b \sec^2\theta \, d\theta$,

or $E(a,b) = \int_{\theta_1}^{\theta_2} \frac{cb^2}{|b|^3} \frac{\sec^2 \theta}{\sec^3 \theta} d\theta$. Since *b* may be positive or negative, we must use |b| where we did, but since $\theta = \arctan(\frac{x}{b})$, it follows that θ is between $-\frac{\pi}{2}$ and $+\frac{\pi}{2}$ and hence $\sec \theta > 0$, so we do not need the absolute value of $\sec \theta$.

Hence
$$E(a,b) = \frac{c}{|b|} \int_{\theta_1}^{\theta_2} \frac{1}{\sec \theta} d\theta = \frac{c}{|b|} \int_{\theta_1}^{\theta_2} \cos \theta d\theta = \frac{c}{|b|} \sin \theta \Big|_{\theta_1}^{\theta_2} = \frac{c}{|b|} (\sin \theta_2 - \sin \theta_1).$$

Analyzing the triangles with b > 0 shows that $\sin \theta_1 = \frac{-a}{\sqrt{a^2 + b^2}}$ and $\sin \theta_2 = L - a$

$$\frac{L-a}{L-a)^2 + b^2}.$$
 Hence
$$E(a,b) = \frac{\lambda}{4\pi\varepsilon_0 b} \left(\frac{L-a}{\sqrt{(L-a)^2 + b^2}} + \frac{a}{\sqrt{a^2 + b^2}}\right).$$

Since clearly E(a, -b) = -E(a, b), the formula holds for all $b \neq 0$. For b = 0, clearly E(a, 0) = 0. **Remark:** If $0 \leq a \leq L$ and b = 0 then the formula is probably physically meaningless since we are actually on the rod. However, if a < 0 or a > L and b = 0, then E(a, 0) = 0 probably is physically meaningful. You can use l'Hopital's Rule to check that for a < 0 or a > L, $\lim_{b \to 0} E(a, b) = 0$.

Math. 126 Quiz #5 February 25, 2003

Find the centroid of the shaded region.

The mass, or equivalently the area, is given by

$$A = \int_{a}^{b} (\sin x - \cos x) dx \; .$$

where a is the x-coordinate of the left-hand intersection point and b is the x-coordinate of the right-handed intersection point.

The point a satisfies $\sin(a) = \cos(a)$ or $\tan(a) = 1$ or $a = \frac{\pi}{4}$. The point b satisfies the same equation and so $b = a + \pi$ or $b = \frac{5\pi}{4}$. You could also eye-ball the points from the graph.

Hence
$$A = -\cos(x) - \sin(x) \Big|_{\frac{\pi}{4}}^{\frac{5\pi}{4}} = -\left(-\frac{\sqrt{2}}{2}\right) - \left(-\frac{\sqrt{2}}{2}\right) - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right) = 4\frac{\sqrt{2}}{2} = 2\sqrt{2}.$$

The moment about the maxim M is given by

The moment about the *x*-axis, M_x is given by

$$M_x = \int_a^b \frac{\sin x + \cos x}{2} (\sin x - \cos x) dx$$

where *a* and *b* are as above. Now $M_x = \frac{1}{2} \int_a^b \sin^2(x) - \cos^2(x) \, dx = \frac{1}{2} \int_a^b \frac{-\cos(2x)}{2} dx = \frac{-1}{8} \sin(2x) \Big|_a^b = \frac{-1}{8} \sin\left(\frac{5\pi}{2}\right) - \frac{-1}{8} \sin\left(\frac{\pi}{2}\right) = \frac{-1}{8} (1) - \frac{-1}{8} (1) = 0.$ The moment about the *y*-axis, M_y is given by

$$M_y = \int_a^b x(\sin x - \cos x) dx$$

where a and b are as above. Integrate by parts: $dv = (\sin x - \cos x)dx$, u = x, so $v = -\cos x - \sin x$ and du = dx so $M_y = -(\cos x + \sin x)x\Big|_a^b + \int_a^b \sin x + \cos x \, dx = -(\cos x + \sin x)x\Big|_a^b - \cos x + \sin x\Big|_a^b = -\cos x(x+1) + \sin x(1-x)\Big|_a^b = -2x\cos x\Big|_a^b$ since $\sin(x) = \cos(x)$ for x = a and for x = b. Hence $M = -2\binom{5\pi}{2}\binom{\sqrt{2}}{2} + 2\binom{\pi}{\sqrt{2}}\binom{\sqrt{2}}{2} = \frac{6\pi\sqrt{2}}{2} = \frac{3\pi\sqrt{2}}{2}$

Therefore, the center of mass is at
$$(\bar{x}, \bar{y}) = \left(\frac{M_y}{A}, \frac{M_x}{A}\right) = \left(\frac{3\pi\sqrt{2}}{2\sqrt{2}}, 0\right) = \left(\frac{3\pi}{4}, 0\right).$$

Looking at the graph, this is not unreasonable.

Math. 126 Quiz #6 March 4, 2003

Solve the initial value problem

$$x\frac{dy}{dx} = x^2 \tan x + y$$
$$y(\pi/4) = 1$$

.....

The equation is linear but not in standard form. The standard form is

$$\frac{dy}{dx} + \frac{-1}{x}y = x\tan x \; .$$

Hence $P(x) = \frac{1}{x}$ and $\int P dx = -\ln |x| + C$. Hence we may use $I = e^{-\ln |x|} = \frac{1}{|x|}$ as an integrating factor, and even use $I = \frac{1}{x}$.

Check: $\frac{d\frac{1}{x}y}{dx} = \frac{1}{x}y' - \frac{1}{x^2}y = \frac{1}{x}\left(y' - \frac{1}{x}y\right)$, so $I = \frac{1}{x}$ is an integrating factor.

Hence $y = \frac{1}{I} \int I \cdot Q dx$, where $Q(x) = x \tan x$, and $I \cdot Q = \tan x$. Therefore $\int I \cdot Q dx = \int \tan x dx = \ln |\sec(x)| + C$ and $\frac{1}{x}y = \ln |\sec(x)| + C$, or $y = x(\ln |\sec x| + C)$.

To solve the initial value problem, note $y(\pi/4) = 1$ and $y(\pi/4) = \frac{\pi}{4}(\ln|\sec(\pi/4)|+C)$, so $1 = \frac{\pi}{4}(\ln\sqrt{2}+C)$, or $C = \frac{4}{\pi} - \ln\sqrt{2}$. Hence

$$y = x \left(\ln |\sec x| + \frac{4}{\pi} - \ln \sqrt{2} \right) \,.$$

Find the area of the region inside the polar curve $r = 3\cos\theta$ and outside the polar curve $r = 2 - \cos\theta$.

We have shaded the required region. We start by locating the initial and terminal angles. We hope that they satisfy the equation $3\cos\theta = 2 - \cos\theta$. This equation is equivalent to $4\cos\theta = 2$ or $\cos\theta = \frac{1}{2}$ and hence $\theta = \pm \frac{\pi}{3}$. We are looking for two angles and we have found two angles.

It now follows that the area is given by

$$A = \frac{1}{2} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left((3\cos\theta)^2 - (2-\cos\theta)^2 \right) d\theta$$

= $\frac{1}{2} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left(9\cos^2\theta - (4-4\cos\theta+\cos^2\theta) \right) d\theta$
= $\frac{1}{2} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left(8\cos^2\theta + 4\cos\theta - 4 \right) d\theta$.

$$\begin{split} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} 1 \ d\theta &= \frac{2\pi}{3} \ ; \\ \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \cos\theta \ d\theta &= \sin\theta \Big|_{-\frac{\pi}{3}}^{\frac{\pi}{3}} = \frac{2\sqrt{3}}{2} = \sqrt{3} \ ; \\ \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \cos^2\theta \ d\theta &= \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{1 + \cos(2\theta)}{2} \ d\theta &= \frac{\theta}{2} + \frac{\sin(2\theta)}{4} \Big|_{-\frac{\pi}{3}}^{\frac{\pi}{3}} = 2\frac{\pi}{6} + 2\frac{\frac{\sqrt{3}}{2}}{4} = \frac{\pi}{3} + \frac{\sqrt{3}}{4} \ . \\ \text{Hence} \\ & Hence \\ A &= 4\left(\frac{\pi}{3} + \frac{\sqrt{3}}{4}\right) + 2\left(\sqrt{3}\right) - 2\left(\frac{2\pi}{3}\right) = 3\sqrt{3} \ . \end{split}$$

Math. 126 Quiz #8 April 2, 2003

Consider the ellipse in the xy-plane which has foci at (3,2) and (3,8) with eccentricity $\frac{1}{2}$.

- 1. What are the coordinates of the center?
- 2. What are the coordinates of the vertices?
- 3. What is the equation of the ellipse?
- 4. What are the equations of the directrixes?

The center is at $\left(\frac{3+3}{2}, \frac{2+8}{2}\right) = (3, 5)$. The major axis is parallel to the y axis. The distance from the center to a focus is c = 8 - 5 = 3 or c = 5 - 2 = 3. Since $e = \frac{c}{a}, \frac{1}{2} = \frac{3}{a}$, so a = 6: the vertices are at $(3, 5 \pm 6)$ or at (3, 11) and (3, -1). Since $b^2 = a^2 - c^2$ for an ellipse, $b^2 = 36 - 9 = 27$. An equation for our ellipse is

$$\frac{(x-3)^2}{27} + \frac{(y-5)^2}{36} = 1$$

The distance from the vertex (3, -1) to the focus (3, 2) is 3. If k is the distance from the vertex (3, -1) to the associated directrix, then $e = \frac{3}{k}$, so k = 6 and so the directrixes are the lines y = -1 - 6 = -7 and y = 11 + 6 = 17.

Which of the following series converge and which diverge? Why?

A.
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
:
Recall $n! = n(n-1) \cdots 2 \cdot 1$
B.
$$\sum_{n=2}^{\infty} \frac{n}{1+\sqrt{n}}$$
:
C.
$$\sum_{n=2}^{\infty} \left(\frac{2^n}{3^n} + \frac{1}{n^2}\right)$$
:
D.
$$\sum_{n=2}^{\infty} \left(\frac{\pi^n}{3^n} + \frac{1}{n^2}\right)$$
:
A. By the Ratio test $\lim_{n \to \infty} \left|\frac{\frac{1}{n+1}!}{\frac{1}{n!}}\right| = \lim_{n \to \infty} \frac{1}{n+1} = 0$ and $0 < 1$ so series converges.
B.
$$\lim_{n \to \infty} \frac{n}{1+\sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n}}{\frac{1}{\sqrt{n}}+1} = \infty$$
. Since $\lim_{n \to \infty} a_n \neq 0$, the series diverges. An equally good calculation is $\lim_{n \to \infty} \frac{n}{1+\sqrt{n}} = \lim_{n \to \infty} \frac{n}{\sqrt{n}} = \lim_{n \to \infty} \sqrt{n} = \infty$.
C.
$$\sum_{n=2}^{\infty} \frac{2^n}{3^n}$$
 is a geometric series with $r = \frac{2}{3} < 1$ and so converges:
$$\sum_{n=2}^{\infty} \frac{1}{n^2}$$
 is a p -series with $p = 2 > 1$ and so it converges. Therefore the sum of the two convergent series converges.
D. This time
$$\sum_{n=2}^{\infty} \frac{\pi^n}{3^n}$$
 is a geometric series with $r = \frac{\pi}{2} > 1$ and so it diverges. This suggests using the Comparison Test: $\frac{\pi^n}{2^n} < \frac{\pi^n}{3^n} + \frac{1}{n^2}$ and $\sum_{n=2}^{\infty} \frac{\pi^n}{3^n}$ diverges: therfore $\sum_{n=2}^{\infty} \left(\frac{\pi^n}{3^n} + \frac{1}{n^2}\right)$ diverges.

Math. 126 Quiz #10 April 15, 2003

Consider the function f(x) defined by the power series

$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^{\frac{3}{2}}}$$

1. Find the interval of convergence of the power series for f.

- 2. Write down the power series for f'(x).
- 3. Find the interval of convergence of the power series for f'.
- 1. Via the Ratio Test: $\left|\frac{\frac{x^{n+1}}{(n+1)^{3/2}}}{\frac{x^n}{n^{3/2}}}\right| = \left|\frac{x^{n+1}n^{3/2}}{x^n(n+1)^{3/2}}\right| = |x|\frac{n^{3/2}}{(n+1)^{3/2}}.$

In the limit, $\lim_{n\to\infty} |x| \frac{n^{3/2}}{(n+1)^{3/2}} = |x|$, since we can compute the limit of an algebraic quotient by examining the highest power of n in the numerator and the highest power of n in the denominator. It follows that the radius of convergence of this power series is 1. When $x = \pm 1$, $\sum_{n=1}^{\infty} \left| \frac{(\pm 1)^n}{n^{\frac{3}{2}}} \right|$ is a p-series with $p = \frac{3}{2} > 1$ and hence convergent. Thus the original two series, $\sum_{n=1}^{\infty} \frac{(\pm 1)^n}{n^{\frac{3}{2}}}$, are absolutely convergent, hence convergent. Therefore the

domain of f is the interval [-1,1] (and the convergence is absolute in the entire interval). $\sum_{n=1}^{\infty} nx^{n-1} \sum_{n=1}^{\infty} x^{n-1} \sum_{n=1}^{\infty} x^n$

- 2. By our theorem, $f'(x) = \sum_{n=1}^{\infty} \frac{nx^{n-1}}{n^{\frac{3}{2}}} = \sum_{n=1}^{\infty} \frac{x^{n-1}}{n^{\frac{1}{2}}}$ or $\sum_{n=0}^{\infty} \frac{x^n}{(n+1)^{\frac{1}{2}}}$.
- 3. The radius of convergence for f' is the same as for f, and hence it is 1. This time the two series we need to examine are $\sum_{n=0}^{\infty} \frac{(\pm 1)^n}{(n+1)^{\frac{1}{2}}}$. When x = +1, we have a pseries with $p = \frac{1}{2} < 1$ so the series diverges. When x = -1 the series is alternating (obvious), the terms go to 0 (also obvious) and the terms are decreasing ($g(x) = x^{-1/2}$, so $g'(x) = -\frac{1}{2}x^{-3/2}$ and when x > 0, $x^{-3/2} > 0$ so g'(x) < 0 and the terms are decreasing). Hence this series converges conditionally and the domain of f'(x) is [-1, 1).