Math 126: Calculus II
Exam I October 3, 2002

Name:
Section:
\qquad

There are 6 problems on 6 pages (including the cover page) worth a total of 100 points. Unless otherwise indicated, each part of a problem is worth the same number of points.

You may use a calculator if you wish. However, all answers must be exact, e.g., 1.414 is not equal to $\sqrt{2}$.
To receive partial credit on a problem, you must show your work including all important steps. No credit will be given for an answer if no work is shown.

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad

Total \qquad

Name:

1. (20 points) Consider the function $f(x)=\frac{e^{3 x}-e^{-3 x}}{2}$.
(a) Write f in terms of hyperbolic trigonometric functions.
(b) Show that it is increasing for all x.
(c) What is its range?
(d) What is the range of its inverse function $g=f^{-1}$?
(e) Find $g^{\prime}(a)$, where $a=0$.

Name:
2. (20 points)
(a) Find $\lim _{x \rightarrow 0} \frac{\ln (1+2 x)}{x}$.
(b) Evaluate $\lim _{x \rightarrow 0}(1+2 x)^{1 / x}$.

Name:
3. (20 points) Evaluate each of the following integrals.
(a) $\int_{0}^{\sqrt{3} / 2} \frac{d x}{1+4 x^{2}}$
(b) $\int_{3}^{6} \frac{5 x-1}{x^{2}-x-2} d x$.

Name:
4. (20 points) Calculate the following integrals.
(a) $\int \frac{\ln x}{x^{3}} d x$.
(b) $\int \frac{x^{2}}{\sqrt{1-x^{2}}} d x$.

Name:
5. (10 points) A sum of money is invested at a fixed rate of interest, compounded continuously. The investment doubles in ten years. Find the interest rate.
6. (10 points) If g is a continuous function satisfying $\int_{1}^{e^{2}} g(x) d x=2002$, find $\int_{0}^{1} e^{2 x} g\left(e^{2 x}\right) d x$.

