Math 126: Calculus II	Name:
Exam I October 3, 2002	Section:

There are 6 problems on 6 pages (including the cover page) worth a total of 100 points. Unless otherwise indicated, each part of a problem is worth the same number of points.

You may use a calculator if you wish. However, all answers must be exact, e.g., 1.414 is not equal to $\sqrt{2}$.

To receive partial credit on a problem, you must *show your work* including *all important steps*. No credit will be given for an answer if no work is shown.

- 1. (20 points) Consider the function $f(x) = \frac{e^{3x} e^{-3x}}{2}$.
 - (a) Write f in terms of hyperbolic trigonometric functions.

(b) Show that it is increasing for all x.

(c) What is its range?

(d) What is the range of its inverse function $g = f^{-1}$?

(e) Find g'(a), where a = 0.

2. (20 points)

(a) Find
$$\lim_{x \to 0} \frac{\ln(1+2x)}{x}$$
.

(b) Evaluate $\lim_{x \to 0} (1+2x)^{1/x}$.

3. (20 points) Evaluate each of the following integrals.

(a)
$$\int_{0}^{\sqrt{3}/2} \frac{dx}{1+4x^2}$$

(b)
$$\int_{3}^{6} \frac{5x-1}{x^2-x-2} dx.$$

4. (20 points) Calculate the following integrals.

(a)
$$\int \frac{\ln x}{x^3} dx.$$

(b)
$$\int \frac{x^2}{\sqrt{1-x^2}} dx.$$

5. (10 points) A sum of money is invested at a fixed rate of interest, compounded continuously. The investment doubles in ten years. Find the interest rate.

6. (10 points) If g is a continuous function satisfying $\int_{1}^{e^2} g(x) dx = 2002$, find $\int_{0}^{1} e^{2x} g(e^{2x}) dx$.