Math 126: Calculus II
Exam II November 14, 2002

Name:
Instructor:
\qquad
There are 6 problems on 7 pages (including the cover page) worth a total of 90 points. You start with 10 points. Unless otherwise indicated, each part of a problem is worth the same number of points.
You may use a calculator if you wish.
To receive partial credit on a problem, you must show your work including all important steps. No credit will be given for an answer if no work is shown.

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6.

$+\quad 10$
Total \qquad

Name:

1. (15 points) Let C be the curve $y=\cos x$ for $0 \leq x \leq \frac{\pi}{2}$.
(a) Set up, but do not evaluate, a definite integral for the arc length of C.
(b) Set up, but do not evaluate, a definite integral for the area of the surface of revolution obtained by rotating C about the x-axis.

Name:
2. (10 points) Solve the initial value problem

$$
x^{2} y^{\prime}+4 x y+1=0, \quad y(1)=0
$$

Name:

3. (20 points)
(a) Determine whether the sequence

$$
a_{n}=\frac{\ln (n+3)}{(n+3)}
$$

converges or diverges. If it converges, find the limit.
(b) Determine whether the series

$$
\sum_{n=1}^{\infty} \frac{\ln (n+3)}{(n+3)^{2}}
$$

is convergent or divergent.

Name:
4. (20 points)
(a) Find $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{8^{n-1}}{3^{2 n}}$.
(b) Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{4^{n}}$ is convergent or divergent.

Name:
5. (15 points) Determine whether the series

$$
\sum_{n=2}^{\infty}(-1)^{n} \frac{\sqrt{n+1}}{n}
$$

is absolutely convergent, conditionally convergent or divergent.

Name:
6. (10 points) Determine whether

$$
\int_{1}^{\infty} \frac{2+\cos x}{x} d x
$$

is convergent or divergent.

