Math	126:	Calc	ulus	s II
Final	Dece	ember	17,	2002

Name:	
Instructor	

There are 12 problems on 10 pages (including the cover page) worth a total of 140 points. You start with 10 points. Unless otherwise specified, each part of a problem is worth the same number of points.

You may use a calculator if you wish.

To receive full credit for a problem, you must *give an exact answer* unless otherwise specified. To receive partial credit on a problem, you must *show your work and all important steps*. No credit will be given for an answer if no work is shown.

- 1.
- 2. _____
- 3. _____
- 4. _____
- 5. _____
- 6. _____
- 7. _____
- 8. _____
- 9. _____
- 10.
- 11. _____
- 12. _____
- + 10

Total _____

Name:_____

1. (15 points) Evaluate the integral:

$$\int_{1}^{4} e^{\sqrt{x}} \, dx.$$

2. (10 points) Find $\lim_{x \to \infty} \left(\frac{x+1}{x} \right)^{4x}$.

Name:_		

3. (10 points) Find the centroid of the region enclosed by the graphs of y=4 and $y=x^2$.

4. (15 points) Solve the initial value problem:

$$(1+x^2)y' + xy^2 = x, y(0) = 0.$$

Hint: This is a separable equation.

Name:_		

5. (10 points) A bacteria culture starts with 600 bacteria and grows at a rate proportional to its size. If after 3 hours there are 12,000 bacteria, how long will it take until the population reaches 45,000.

6. (10 points) For which p > 0 is the series

$$\sum_{n=1}^{\infty} \frac{2 + e^{-n}}{n^p}$$

convergent? For which is it divergent? Justify your answer.

7. (10 points) Use the integral test to examine the series

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^3}$$

for convergence or divergence.

8. (10 points) Find the radius of convergence and the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^n}{n^5}$.

Name:_____

- 9. (15 points)
 - (a) Find the Maclaurin series of $f(x) = x^2 \cos x$.

(b) Find $f^{(2002)}(0)$.

Name:_____

- 10. (15 points)
 - (a) Find a power series for $\int_0^x e^{-t^2} dt$.

(b) Evaluate $\int_0^1 e^{-t^2} dt$ with an error less than 10^{-2} .

- 11. (10 points) Consider the parametric curve $x=2\cos t,\ y=3\sin t,\ 0\leq t\leq\pi.$
 - (a) Sketch this curve.

(b) Set up an integral to compute the length of this curve. Do ${\bf NOT}$ evaluate the integral.

Name:	

12. (10 points) Find the area of the region that lies inside the curve $r=2-2\cos\theta$ but outside the curve r=2.