Math 126: Calculus II
Final December 17, 2002

Name: \qquad
Instructor: \qquad

There are 12 problems on 10 pages (including the cover page) worth a total of 140 points. You start with 10 points. Unless otherwise specified, each part of a problem is worth the same number of points.

You may use a calculator if you wish.
To receive full credit for a problem, you must give an exact answer unless otherwise specified. To receive partial credit on a problem, you must show your work and all important steps. No credit will be given for an answer if no work is shown.

1. \qquad
2.
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
$+\quad 10$

Total \qquad

Name:

1. (15 points) Evaluate the integral:

$$
\int_{1}^{4} e^{\sqrt{x}} d x
$$

2. (10 points) Find $\lim _{x \rightarrow \infty}\left(\frac{x+1}{x}\right)^{4 x}$.

Name:
3. (10 points) Find the centroid of the region enclosed by the graphs of $y=4$ and $y=x^{2}$.

Name:
4. (15 points) Solve the initial value problem:

$$
\left(1+x^{2}\right) y^{\prime}+x y^{2}=x, \quad y(0)=0
$$

Hint: This is a separable equation.

Name: \qquad
5. (10 points) A bacteria culture starts with 600 bacteria and grows at a rate proportional to its size. If after 3 hours there are 12,000 bacteria, how long will it take until the population reaches 45,000.
6. (10 points) For which $p>0$ is the series

$$
\sum_{n=1}^{\infty} \frac{2+e^{-n}}{n^{p}}
$$

convergent? For which is it divergent? Justify your answer.

Name: \qquad
7. (10 points) Use the integral test to examine the series

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{3}}
$$

for convergence or divergence.
8. (10 points) Find the radius of convergence and the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{5}}$.

Name:
9. (15 points)
(a) Find the Maclaurin series of $f(x)=x^{2} \cos x$.
(b) Find $f^{(2002)}(0)$.

Name:
10. (15 points)
(a) Find a power series for $\int_{0}^{x} e^{-t^{2}} d t$.
(b) Evaluate $\int_{0}^{1} e^{-t^{2}} d t$ with an error less than 10^{-2}.

Name: \qquad
11. (10 points) Consider the parametric curve $x=2 \cos t, y=3 \sin t, 0 \leq t \leq \pi$.
(a) Sketch this curve.
(b) Set up an integral to compute the length of this curve. Do NOT evaluate the integral.

Name: \qquad
12. (10 points) Find the area of the region that lies inside the curve $r=2-2 \cos \theta$ but outside the curve $r=2$.

