Solutions to Math 165 Final Exam

1 i.
$f^{\prime}(x)=-5 x^{4}+1+x^{2}-x \cdot 2 x\left(1+x^{2}\right)^{2}+2 x \cos \left(x^{2}+3\right)+\sqrt{2+\cos \left(1+x^{4}\right)\left(1+x^{4}\right)}-\sqrt{2+\cos x^{2}} 2 x$

1 ii. I

$$
I=\int_{1}^{2} x d x+\int_{2}^{3} 2 x d x=\left.x^{2} 2\right|_{1} ^{2}+\left.x^{2}\right|_{2} ^{3}=(2-12+(9-4)=32+5=132
$$

2 i. Let $\xi>0$. We want to find $\delta>0$ such that $0<|x|<\delta \Rightarrow|f(x)|<\xi$. To have $|f(x)|=|\xi x \sin 1 x|<5 \cdot \delta \cdot 1<\xi$ we must choose $\delta<\xi 5$, say $\delta=\xi 6$.

2 ii. We have
$f(x+h)-f(x) h=1 x+h-1 x h=x-(x-h) x(x+h) h=-1 x(x+h) \rightarrow-1 x^{2}$ as $h \rightarrow 0$. Thus $f^{\prime}(x)=-1 x^{2}$.
3. i) f is decreasing. ii) f is concave upwards. iii) f has a local maximum at $x=1$. iv) f has a point of inflection at $x=3$. v) f is a straight line.
4. a) $A=l w$. Thus $A^{\prime}=l^{\prime} n+l w^{\prime}$ and $A^{\prime}=-2.5+12.2=4$ b) Perimeter $P=2 l+2 w$. Thus, $P^{\prime}=2 l^{\prime}+2 w^{\prime}$ and $P^{\prime}=2(-2)+2 \cdot 2=0$. c) The length of diagonal $d=\sqrt{l^{2}+w^{2}}$ or $d^{2}=l^{2}+w^{2}$. Thus $d d^{\prime}=l l^{\prime}+w w^{\prime}$ and $13 d^{\prime}=12 \cdot(-2)+5 \cdot 2=-14$ or $d^{\prime}=-1413$. Increasingquantities $=$ area \quad Decreasingquantities $=$ diagonals.
5. Volume $V=13 \pi r^{2} h$. Since $r^{2}=1-h^{2}$, we have $V=V(h)=13 \pi h\left(1-h^{2}\right), 0 \leqq$ $h \leq 1$. We have $V^{\prime}(h)=13 \pi\left[1-3 h^{2}\right]$. Thus $V^{\prime}=0$ iff $3 h^{2}=1$ or $h^{2}=13$ or $h= \pm 1 \sqrt{3}$. Since $h \geq 0$ we have $h=1 \sqrt{3}$. Since $V^{\prime \prime}(h)=13 \pi(-6 h)<0$ at $h=1 \sqrt{3}$ we have that the volume is maximum when $h=1 \sqrt{3}$.
6.
i) $A=\int_{-1}^{1}\left[2-x^{2}-1\right] d x=2 \int_{0}^{1}\left(1-x^{2}\right) d x=\left.2\left(x-x^{3} 3\right)\right|_{0} ^{1}=2(1-13)=43$ ii)
$V=\pi \int_{-1}^{1}\left[2^{2}-\left(x^{2}+1\right)^{2}\right] d x=2 \pi \int_{-1}^{1}\left(3-x^{2}-2 x\right) d x=\left.2 \pi\left(3 x-x^{3} 3-x^{2}\right)\right|_{0} ^{1}=2 \pi(3-13-1)=103 \pi$
i) The area is 43 . ii) The volume is $10 \pi 3$.
7.
i) $f\left(x_{0}\right)=y_{0}$
ii) $f(b)-f(a) b-a=f^{\prime}(c)$
iii) $d F d x=d d x \int_{a}^{x} f(t) d t=f(x)$
iv) $\int_{a}^{b} f(x) d x=F(b)-F(a)$
v) $d d x \int_{g(x)}^{h(x)} f(t) d t=f(h(x)) h^{\prime}(x)-f(g(x)) g^{\prime}(x)$
8. ii) Since f is continuous at $x=1$ for $\xi=12 f(1)$ there exist $\delta>0$ such that if $|f(x)-f(1)|<\xi=12 f(1)$

$$
\text { or }-12 f(1)<f(x)-f(1)<12 f(1)
$$

or

$$
f(1)-12 f(1)<f(x)<12 f(1)+f(1)
$$

or

$$
12 f(1)<f(x)<32 f(1) .
$$

Thus, $f(x)>12 f(1)$ for $|x-1|<\delta$.

