Math 165: Honors Calculus I Name: Exam I Oct. 13, 1994

There are 9 problems worth 12 points each. Problem 10 is a bonus question worth an additional 12 points.

1. a) (4 pts) Define the positive integers, .
b) (4 pts) Define the rational numbers, .
c) $(4 \mathrm{pts})$ Assume $\sqrt{3}$ is irrational. Prove that $(\sqrt{3}-1)^{3}$ is irrational.
2. a) (4 pts) Define an inductive set.
b) (4 pts) State the Principle of Mathematical Induction.
c) (4 pts) Prove by induction that for $n \in$

$$
(x-1) \sum_{k=0}^{n-1} x^{k}=x^{n}-1
$$

3. a) (4 pts) Define $\binom{n}{k}$.
b) (4 pts) State the Binomial Theorem.
c) (4 pts) Find the coefficient of x^{14} in $\left(x^{2}+3\right)^{20}$.
4. a) (4 pts) Define what it means for a set S of real numbers to be bounded from above.
b) (4 pts$)$ Define $\sup S$.
c) $(4 \mathrm{pts})$ Let $S=\left\{\left.\frac{n}{n+1} \right\rvert\, n \in\right\}$. Prove that $\sup S=1$.
5. Give a precise definition of the following.
a) $(4 \mathrm{pts})$ A step function s on $[a, b]$.
b) (4 pts) $\int_{a}^{b} s(x) d x$ where s is a step function on $[a, b]$.
c) $(4 \mathrm{pts})$ An integrable function f on $[a, b]$.
6. (12 pts) Let

$$
f(x)= \begin{cases}0 & \text { if } x \in \text { and } 0 \leq x \leq 1 \\ 1 & \text { if } x \notin \text { and } 0 \leq x \leq 1\end{cases}
$$

a) (4 pts) Show that $\underline{I}(f)=0$.
b) (4 pts) Show that $\bar{I}(f)=1$.
c) (4 pts) Prove that f is not integrable on $[0,1]$.
7. Give precise statements of the following theorems for integrals.
a) (4 pts) The Linearity Theorem.
b) (4 pts) The Comparison Theorem.
c) (4 pts) The Expansion/Contraction Theorem.
8. Evaluate the following integrals (justify your answers!).
a) $(4 \mathrm{pts}) \int_{-1}^{2}\left(3 x^{2}-6 x+1\right) d x$.
b) $(4 \mathrm{pts}) \int_{1}^{3}(x-2)^{7} d x$.
c) $(4 \mathrm{pts}) \int_{-2}^{2} \frac{x^{3}}{\sqrt{1+x^{2}}} d x$.
9. a) (6 pts) Find an expression for the area between the graphs of $f(x)=$ x^{2} and $g(x)=3 x-2$ on the interval $[0,4]$. Write the answer as a sum of integrals without absolute values - do not evaluate the integrals.
b) (6 pts) Find the average value of the function $f(x)=\sqrt{x}$ on the interval $[0,4]$.
10. Bonus Problem. (12 pts) Let

$$
g(x)= \begin{cases}0 & \text { if } x=\frac{1}{n} \text { for some } n \in \\ 1 & \text { if } x \neq \frac{1}{n} \text { for some } n \in\end{cases}
$$

Prove that g is integrable on $[0,1]$ and find the value of $\int_{0}^{1} g(x) d x$.

