Exam I Oct. 13, 1994

There are 9 problems worth 12 points each. Problem 10 is a bonus question worth an additional 12 points.

1. a) (4 pts) Define the positive integers, .

b) (4 pts) Define the rational numbers, .

c) (4 pts) Assume $\sqrt{3}$ is irrational. Prove that $(\sqrt{3}-1)^3$ is irrational.

2. a) (4 pts) Define an inductive set.

b) (4 pts) State the Principle of Mathematical Induction.

c) (4 pts) Prove by induction that for $n \in$

$$(x-1)\sum_{k=0}^{n-1} x^k = x^n - 1$$

3. a) (4 pts) Define
$$\binom{n}{k}$$
.

b) (4 pts) State the BINOMIAL THEOREM.

c) (4 pts) Find the coefficient of x^{14} in $(x^2 + 3)^{20}$.

4. a) (4 pts) Define what it means for a set S of real numbers to be bounded from above.

b) (4 pts) Define $\sup S$.

c) (4 pts) Let $S = \left\{ \frac{n}{n+1} \mid n \in \right\}$. Prove that $\sup S = 1$.

- 5. Give a precise definition of the following.
 - a) (4 pts) A step function s on [a, b].

b) (4 pts) $\int_a^b s(x) dx$ where s is a step function on [a, b].

c) (4 pts) An integrable function f on [a, b].

$$f(x) = \begin{cases} 0 & \text{if } x \in \text{ and } 0 \le x \le 1\\ 1 & \text{if } x \notin \text{ and } 0 \le x \le 1 \end{cases}$$

a) (4 pts) Show that
$$\underline{I}(f) = 0$$
.

b) (4 pts) Show that
$$\overline{I}(f) = 1$$
.

c) (4 pts) Prove that
$$f$$
 is *not* integrable on $[0,1]$.

7.	Give precise statements of the following theorems for integrals. $$
	a) (4 pts) The Linearity Theorem.
	b) (4 pts) The Comparison Theorem.
	c) (4 pts) The Expansion/Contraction Theorem.
	c) (4 pts) The Expansion/Contraction Theorem.

8. Evaluate the following integrals (justify your answers!).

a)
$$(4 \text{ pts}) \int_{-1}^{2} (3x^2 - 6x + 1) dx$$
.

b)
$$(4 \text{ pts}) \int_1^3 (x-2)^7 dx$$
.

c) (4 pts)
$$\int_{-2}^{2} \frac{x^3}{\sqrt{1+x^2}} dx$$
.

9. a) (6 pts) Find an expression for the area between the graphs of $f(x) = x^2$ and g(x) = 3x-2 on the interval [0, 4]. Write the answer as a sum of integrals without absolute values—do *not* evaluate the integrals.

b) (6 pts) Find the average value of the function $f(x) = \sqrt{x}$ on the interval [0,4].

10. Bonus Problem. (12 pts) Let

$$g(x) = \begin{cases} 0 & \text{if } x = \frac{1}{n} \text{ for some } n \in \\ 1 & \text{if } x \neq \frac{1}{n} \text{ for some } n \in \end{cases}$$

Prove that g is integrable on [0,1] and find the value of $\int_0^1 g(x) dx$.