Math 165: Honors Calculus I

Name:____

Final Exam *Dec.* 19, 1994

There are 15 problems worth from 5 to 25 points for a total of 170 points.

- 1. (25 pts) Give complete definitions for the following concepts.
 - a) A function f is integrable on [a, b].
 - b) $\lim_{x \to p} f(x) = A$.
 - c) A function f is continuous at p.
 - d) A function f is differentiable at p.
 - e) f is a convex function on [a, b].

a)	Principle of Mathematical Induction.
b)	Binomial Theorem.
c)	Expansion or Contraction of the Interval of Integration.
d)	Intermediate Value Theorem.
e)	Second Derivative Test for Extrema.

 $2.\ (25\ \mathrm{pts})$ State the following theorems precisely.

- 3. (20 pts) Calculate the following.
 - a) $\int_0^2 [x^2] dx$ where [u] is the greatest integer $\leq u$.

b)
$$\int_{1}^{x} t^{2} + (t-1)^{1/2} dt, x \ge 1.$$

c) The average value of the function $f(x) = x^3$ on the interval [-1, 2].

d)
$$\int_{-1}^{1} \frac{x}{x^4 + 4} \, dx$$

4. (20 pts) Compute the following limits or prove they do not exist.

a)
$$\lim_{x \to 1} (x^2 - x) \left(1 - \cos \frac{1}{x - 1} \right)$$
.

b)
$$\lim_{x \to 2^-} \frac{\sqrt{x^3 - 4x^2 + 4x}}{x - 2}$$
.

c)
$$\lim_{x\to 0} \frac{(1+x^2)^n - (1-x^2)^n}{x^2}$$
 where n is a fixed positive integer.

d)
$$\lim_{x \to 0} \frac{\sin(3x)}{\sin(x)}.$$

5. (20 pts) Compute the following derivatives.

a)
$$\frac{d}{dx} \left[x^2 (1-x)^{12} \right]$$
.

b)
$$\frac{d}{dx}\sqrt{1+x^2}$$

c)
$$\frac{d}{dx}\sin(\sin(x^3))$$

d)
$$\frac{dy}{dx}$$
 where y is defined implicitly by the equation $y^3 + xy + 1 = 0$.

6. (5 pts) Find the largest interval containing x=1/2 on which the function $f(x)=(x^2-1)^2$ has an inverse. Give a formula for the corresponding inverse function, $f^{-1}(x)$, as a function of x.

7. (5 pts) Find an expression for the area between the graphs of the functions $f(x) = x^2 - 2x$ and g(x) = 1 - x on the interval [0, 3]. Write the answer as a sum of integrals without absolute values—do not evaluate the integrals.

8. (5 pts) Find the equation of the line tangent to the curve defined by $y = x^4 - x^3 + x^2 - x + 1$ at the point (1, 1).

9. (5 pts) Consider the Fibonacci sequence, 1, 1, 2, 3, 5, 8, ..., where the next term is the sum of the previous two. Let a_n be the nth term of this sequence so that $a_1 = 1$, $a_2 = 1$, and $a_{n+2} = a_{n+1} + a_n$, $n \ge 1$. Use induction to prove that

$$a_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right]$$

You may find the following useful:

$$\left(\frac{2}{1\pm\sqrt{5}}\right)^2 + \left(\frac{2}{1\pm\sqrt{5}}\right) = 1$$

10. (5 pts) Prove that the equation $x\cos(x)=1-x^2$ has a solution in the interval $[0,\pi]$.

11. (5 pts) Use the definition of a limit to prove that $\lim_{x\to 1} x^2 = 1$.

12. (5 pts) Let

$$f(x) = \begin{cases} 6\sqrt{x} - 5, & \text{for } x < 1\\ x^3, & \text{for } x \ge 1 \end{cases}$$

Prove that f'(1) = 3. You must use the definition of a derivative for this and should examine one-sided limits.

13. (5 pts) If a and b are legs of a right triangle whose hypotenuse is 1, find the largest value of 2a + b.

- 14. (10 pts) Let $f(x) = 3x^4 + 4x^3 12x^2$.
 - a) Determine the intervals on which f is increasing and decreasing.

b) Determine the relative extrema of f.

c) Determine the intervals on which f is convex and concave.

d) Sketch the graph of f.

15. (10 pts) State and prove the Mean Value Theorem for Derivatives. You may use Rolle's Theorem.