Name:_____

1. a) State the least upper bound axiom (Axiom #10).

b) Prove that if A is a non-empty subset of B and if B has an upper bound, then $\sup A \leq \sup B$.

c) Let $A = \{1/n \mid n \in \}$. Compute (or prove it doesn't exist): sup A and inf A.

- 2. Let f be a bounded function on [a, b].
 - a) Define the lower integral, $\underline{I}(f)$, and the upper integral, $\overline{I}(f)$.

b) State a condition on $\underline{I}(f)$ and $\overline{I}(f)$ that is equivalent to f being integrable.

c) Define what it means for f to be monotone on [a, b].

- 3. Let f be increasing on [a, b].
 - a) Describe how to approximate $\int_a^b f(x) dx$ by dividing [a, b] into n subintervals of equal length.

b) If f(x) = x + 1/x on [1,2], how large must *n* be in order that the approximation in part a) is within 0.001 of the actual value of $\int_{1}^{2} f(x) dx$.