1. a) State the Basic Limit Theorems.

b) Use the Basic Limit Theorems to prove that if f and g are continuous at p, then f+g and $f\cdot g$ are continuous at p.

2. a) State the SQUEEZING PRINCIPLE.

b) Use the Squeezing Principle to prove $\lim_{t\to 0} t\cos(3t^2) = 0$.

3. Suppose f(x) is a function with the following property: if |x-1| < 3 then $|f(x)-5| < 7|x-1|^2$. Given $\epsilon > 0$, determine how δ should be chosen so that if $|x-1| < \delta$ then $|f(x)-5| < \epsilon$.

4. Find
$$\lim_{x \to 1} \frac{\sqrt{x+3} - 2}{x-1}$$
.