Math 165: Honors Calculus I Name: Exam I Sept. 28, 1995

There are 9 problems worth of total of 110 points.

1. a) (5 pts) Define the positive integers, .
b) (5 pts) Define the rational numbers, .
c) $(5 \mathrm{pts})$ Using only the axioms for the real numbers, prove that $a \cdot 0=$ 0 for all $a \in$.
2. a) (5 pts) State the Principle of Mathematical Induction.
b) (5 pts) Prove by induction that for $n \in$

$$
(x-1) \sum_{k=0}^{n-1} x^{k}=x^{n}-1
$$

3. a) (5 pts) Define completely $\binom{n}{k}$.
b) (5 pts) State the Binomial Theorem.
c) (5 pts) Find the coefficient of x^{15} in $\left(x^{3}+2\right)^{20}$ (give the prime factorization of this coefficient).
4. a) (2 pts) Define what it means for a set S of real numbers to be bounded from below.
b) (3 pts) Define inf S.
c) $(5 \mathrm{pts})$ Let $S=\left\{\left.\frac{n}{n^{2}+1} \right\rvert\, n \in\right\}$. Prove that $\inf S=0$.
5. Give precise definitions of the following.
a) $(5 \mathrm{pts})$ A step function s on $[a, b]$.
b) (5 pts) $\int_{a}^{b} s(x) d x$ where s is a step function on $[a, b]$.
c) (5 pts) The upper integral of f on $[a, b], \bar{I}(f)$.
d) (5 pts) An integrable function f on $[a, b]$.
6. (5 pts) Find an approximation for $\int_{0}^{1} \frac{1}{1+x^{3}} d x$ that is accurate to within ± 0.075.
7. Give precise statements of the following theorems for integrals.
a) (5 pts) The Linearity Theorem.
b) (5 pts) The Expansion/Contraction Theorem.
8. Evaluate the following integrals (justify your answers!).
a) (5 pts) $\int_{-1}^{2}\left|3 x^{2}-6 x\right| d x$.
b) $(5 \mathrm{pts}) \int_{1}^{3}(x-2)^{17} d x$.
c) $(5 \mathrm{pts}) \int_{-3}^{3} \frac{x^{5}}{\sqrt{2+x^{4}}} d x$.
9. a) (5 pts) Find an expression for the area between the graphs of $f(x)=$ x^{2} and $g(x)=3 x-2$ on the interval $[0,4]$. Write the answer as a sum of integrals without absolute values - do not evaluate the integrals.
b) (5 pts) Find the average value of the function $f(x)=\sqrt{x}$ on the interval $[0, a]$.
