Math 165: Honors Calculus I
Name:
Quiz 4 Sept. 21, 1995

1. a) Define the supremum, $\sup A$, of a subset of real numbers $A \subset$.
b) Prove that if A is a non-empty subset of B and if B has an upper bound, then $\sup A \leq \sup B$.
c) Let $A=\{1 / n \mid n \in\}$. Compute (or prove it doesn't exist): $\sup A$ and $\inf A$.
2. Let f be a bounded function on $[a, b]$.
a) Define the lower integral of $f, \underline{I}(f)$, and the upper integral of f, $\bar{I}(f)$.
b) State a condition on $\underline{I}(f)$ and $\bar{I}(f)$ that is equivalent to f being integrable.
3. a) Define what it means for f to be piecewise monotone on $[a, b]$.
b) Let f be increasing on $[a, b]$. Describe how to approximate $\int_{a}^{b} f(x) d x$ by dividing $[a, b]$ into n subintervals of equal length.
