Math 165: Honors Calculus I
Name:
Quiz 9 Nov. 9, 1995

1. a) State the Boundedness Theorem for Continuous Functions.
b) Use a) to prove that if $f$ is continuous on $[a, b]$ then $f$ has a maximum on $[a, b]$. (Hint: Let $M=\sup _{[a, b]} f, g(x)=M-f(x)$, and consider $1 / g(x)$.
2. Let $f(x)$ be continuous on $[a, b]$ and suppose $0<f(x)<1$ for all $x \in[a, b]$. Prove that there is a positive integer $n$ such that

$$
\frac{1}{n} \leq f(x) \leq 1-\frac{1}{n}
$$

for all $x \in[a, b]$
3. Let $f(x)$ be continuous on $[a, b]$ and let $p \in[a, b]$. Prove that for any $\varepsilon>0$ there exists a neighbohood of $p, N(p) \subset[a, b]$, such that the span of $f$ on $N(p)$ is $<\varepsilon$.

