September 9, 1997

I wish to make a remark concerning the shifting of indices in a sum. A

sum:
n—1
> ck
k=0
can also be written as:

n
Z Cl—1-
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This simple trick is sometimes useful as we shall see in the proof of the
binomial theorem.

Solutions (# 4 p.44) Use induction to prove the binomial theorem:
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Proof. If n=1,LHS = a+ b,
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Assume that the Theorem is valid for n we want to show that it is also valid
for n + 1:
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The first sum on the right above can be written as:
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The second sum on the right above can be written as:
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We use the trick of shifting indices to write the first sum above as:
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We have used the identity:
n+11\ n n
which is verified by a direct calculation:
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If we set a = b =1 in the binomial theorem we obtain the identity:
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On the other hand, if we take a = —1 and b = 1 then we get

i(—l)k < Z ) =0.

k=0
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