
September 14, 1997

Example p. 45, # 13
(a) Let p be a positive integer. Prove that:

bp − ap = (b− a)(bp−1 + bp−2a + .... + bap−2 + ap−1).

Proof. Expand the RHS by direct calculation:

RHS = bp + bp−1a + bp−2a2 + .... + b2ap−2 + bap−1

− bp−1a− bp−2a2 − ...− b2ap−2 − bap−1 − ap = bp − ap.

(b) Let p and n be positive integers. Use (a) to show that:

np <
(n + 1)p+1 − np+1

p + 1
< (n + 1)p.

Proof. Set b = n + 1 and a = n in part (a). Then

(n + 1)p − np = ((n + 1)p−1 + (n + 1)p−2n + .... + (n + 1)np−2 + np−1).

The RHS above consists of p+1 terms and each term satisfies the condition:

np ≤ (n + 1)inp−i ≤ (n + 1)p.

Hence
(p + 1)np ≤ (n + 1)p − np ≤ (p + 1)(n + 1)p

and (b) is obtained by dividing through by p + 1.

(c) Use induction to prove that:

n−1∑
k=1

kp <
np+1

p + 1
<

n∑
k=1

kp.

Proof. If n = 1 then LHS = 0 the middle term is 1/(p+1) and the RHS = 1.
Thus the inequality is verified for n = 1. Assume now that the inequality
is valid for n we want to show that it is also valid for n + 1. For n + 1 the
LHS is, by assumption

LHS =
n+1−1∑

k=1

kp =
n−1∑
k=1

kp + np <
np+1

p + 1
+ np.
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By (b), we conclude that

LHS <
np+1

p + 1
+

(n + 1)p+1 − np+1

p + 1
=

(n + 1)p+1

p + 1
.

On the other hand the RHS (for n + 1) is by assumption:

RHS =
n+1∑
k=1

kp =
n∑

k=1

kp + (n + 1)p >
np+1

p + 1
+ (n + 1)p.

Hence, by (b):

RHS >
np+1

p + 1
+ (n + 1)p >

np+1

p + 1
+

(n + 1)p+1 − np+1

p + 1
=

(n + 1)p+1

p + 1
.

We have shown in class (Theorem 1.12, p. 77) that a monotone function
f(x) defined on a closed interval is integrable. Thus the function f(x) = xp, p
any positive integer is integrable on the interval [0, b], b > 0. We now show,
with the help of the preceding example that (Theorem 1.23, p. 79-80):∫ b

0
xpdx =

bp+1

p + 1
.

Proof. As in the proof of Theorem 1.12, we consider the partition of [0, b]:

x0 = 0, x1 =
b

n
, ..., xk =

kb

n
, ..., xn = b.

Thus f(x) = xp is approximated from below by the step function

sn = xp
k−1 = (

kb

n
)p on (xk, xk+1)

k = 0, ..., n− 1 and from above by the step function:

tn = xp
k+1 = (

(k + 1)b
n

)p on (xk, xk+1)

k = 0, ..., n− 1. By the definition of the integral of a step function we have:

∫ b

0
sndx =

b

n

n−1∑
k=0

(
kb

n
)p =

b

n

n−1∑
k=1

(
kb

n
)p =

bp+1

np+1

n−1∑
k=1

kp
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(because kb/n = 0 if k = 0) and

∫ b

0
tndx =

b

n

n−1∑
k=0

(
(k + 1)b

n
)p =

b

n

n∑
k=1

(
kb

n
)p =

bp+1

np+1

n∑
k=1

kp

by the trick of shifting indices (cf. the notes on September 9). By the
preceding example∫ b

0
sndx <

bp+1

np+1

np+1

p + 1
=

bp+1

p + 1
<

∫ b

0
tndx. (1)

On the other hand,

0 ≤
∫ b

0
tndx−

∫ b

0
sndx =

bp+1

np+1

n∑
k=1

kp − bp+1

np+1

n−1∑
k=1

kp =
bp+1

np+1
np =

bp+1

n

which tends to 0 as n→∞, i.e.

lim
n→∞

∫ b

0
tndx = lim

n→∞

∫ b

0
sndx.

This together with the estimate (1) imply that∫ b

0
xpdx = lim

n→∞

∫ b

0
tndx = lim

n→∞

∫ b

0
sndx =

bp+1

p + 1
.
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