
MATH 165: HONORS CALCULUS I
ASSIGNMENT 9 SOLUTIONS

Problem 1 p.45, #13

a) bp − ap = (b− a)
p−1∑
k=0

bp−k−1ak.

Proof.

(b− a)
p−1∑
k=0

bp−k−1ak =
p−1∑
k=0

bbp−k−1ak − abp−k−1ak

=
p−1∑
k=0

bp−kak − bp−(k+1)ak+1

= bp−0a0 − bp−(p−1+1)ap−1+1 [telescoping sum]
= bp − ap

�

b) np <
(n + 1)p+1 − np+1

p + 1
< (n + 1)p

Proof. Use the formula from a) for the case p + 1 and plug in b = n + 1 and a = n.
This gives

(n + 1)p+1 − np+1 = (n + 1− n)
p∑

k=0

(n + 1)p−knk =
p∑

k=0

(n + 1)p−knk

Apply the inequality nk < (n + 1)k for k = 1, . . . , p on the right hand side to get

(n + 1)p+1 − np+1 <

p∑
k=0

(n + 1)p−k(n + 1)k =
p∑

k=0

(n + 1)p

The right hand side consists of (p + 1) copies of (n + 1)p so we get

(n + 1)p+1 − np+1 < (p + 1)(n + 1)p

1
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The other inequality is similar. Apply the inequality (n + 1)k > nk for k = 1, . . . , p
on the right hand side to get

(n + 1)p+1 − np+1 =
p∑

k=0

(n + 1)p−knk

>

p∑
k=0

np−knk =
p∑

k=0

np

= (p + 1)np

�

c)
n−1∑
k=1

kp <
np+1

p + 1
<

n∑
k=1

kp (*)

Proof. Use induction on n. The formula is true for n = 1:

0 =
0∑

k=1

kp <
1p+1

p + 1
<

1∑
k=1

kp

We assume the inequalities (*) are true for n, and prove they hold for n + 1. The
left hand side of (*) for n + 1 looks like:

n∑
k=1

kp =
( n−1∑

k=1

kp

)
+ np

<
np+1

p + 1
+ np [induction hypothesis]

<
(n + 1)p+1

p + 1
[by part b)]

so the left inequality is true for n + 1. The right hand side of (*) for n + 1 is:
n+1∑
k=1

kp =
( n∑

k=1

kp

)
+ (n + 1)p

>
np+1

p + 1
+ (n + 1)p [induction hypothesis]

>
(n + 1)p+1

p + 1
[by part b)]

�

Problem 2 Let A and B be non-empty sets of real numbers bounded above and
below, respectively.
a) If k < supA then there is a number a ∈ A such that k < a.

Proof. Suppose statement a) is false. Then there is some k < supA such that k ≥ a
for all a ∈ A. Therefore, k is an upper bound for A. Since supA is the least upper
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bound for A, it must be less than k: supA ≤ k. But this contradicts k < supA.
Therefore statement a) must be true. �

b) If h > inf B then there is a number b ∈ B such that b < h.

Proof. Suppose statement b) is false. Then there is some h > inf B such that b ≥ h
for all b ∈ B. Therefore, h is a lower bound for B. Since inf B is the greatest lower
bound for B, it must be greater than h: inf B ≥ h. But this contradicts h > inf B.
Therefore, statement b) must be true. �

Problem 3 Let A and B be non-empty sets of real numbers with A contained in
B.
a) If A and B are bounded above, then supA ≤ supB.

Proof. Let k = supB and suppose k < supA. By 2a), there is a number a ∈ A
such that k < a. Since k = supB ≥ b for all b ∈ B, the number a cannot be in B.
But this contradicts the assumption that B contains A. Since assuming k < supA
leads to a contradiction, it must be that supA ≤ k, i.e., supA ≤ supB. �

b) If A and B are bounded below, then inf B ≤ inf A.

Proof. Let h = inf B and suppose h > inf A. By 2b), there is a number a ∈ A such
that a < h. Since h = inf B ≤ b for all b in B, the number a cannot be in B. But
this contradicts the assumption that B contains A. Since assuming h > inf A leads
to a contradiction, it must be that h ≤ inf A, i.e., inf B ≤ inf A. �

Problem 4 For 0 ≤ x ≤ 1 define

f(x) =
{

1 if x is rational
0 if x is irrational

a) If s and t are step functions satisfying s(x) ≤ f(x) ≤ t(x) for all 0 ≤ x ≤ 1, then
s(x) ≤ 0 and t(x) ≥ 1, except possibly at partition points.

Proof. Let P = {x0, x1, ..., xn} be a common refinement of partitions for s and
t so that s and t are constant on the open subintervals of P : s(x) = sk and
t(x) = tk for xk−1 < x < xk, k = 1, . . . , n. By assumption, sk ≤ f(x) ≤ tk for
xk−1 < x < xk. Let qk be a rational number and rk an irrational number in the
open interval (xk−1, xk), for k = 1, . . . , n. Then sk ≤ f(rk) = 0 and 1 = f(qk) ≤ tk
for k = 1, ..., n. Therefore, s(x) ≤ 0 and t(x) ≥ 1, except possibly at partition
points. �

b) The lower integral of f , I(f) = 0, and the upper integral of f , I(f) = 1. Hence
f cannot be integrable by Theorem 1.9.

Proof. Let s and t be step functions as in part a). Then∫ 1

0

s(x) dx =
n∑

k=1

sk(xk − xk−1) ≤
n∑

k=1

0(xk − xk−1) = 0

and ∫ 1

0

t(x) dx =
n∑

k=1

tk(xk − xk−1)) ≥
n∑

k=1

1(xk − xk−1) = 1.
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We conclude that every number in the set

S =
{ ∫ 1

0

s(x) dx
∣∣ s ≤ f

}
is ≤ 0 and every number in the set

T =
{ ∫ 1

0

t(x) dx
∣∣ f ≤ t

}
is ≥ 1. Therefore I(f) = supS ≤ 0 and I(f) = inf T ≥ 1. Notice also that the
constant step functions s(x) = 0 and t(x) = 1 satisfy s(x) ≤ f(x) ≤ t(x) for all 0 ≤
x ≤ 1, so 0 ∈ S and 1 ∈ T . Therefore I(f) = supS = 0 and I(f) = inf T = 1. �


