MATH 165: HONORS CALCULUS I ASSIGNMENT 9 SOLUTIONS

Problem 1 p.45, #13
a)
$$b^p - a^p = (b - a) \sum_{k=0}^{p-1} b^{p-k-1} a^k$$
.

Proof.

$$(b-a)\sum_{k=0}^{p-1}b^{p-k-1}a^{k} = \sum_{k=0}^{p-1}bb^{p-k-1}a^{k} - ab^{p-k-1}a^{k}$$
$$= \sum_{k=0}^{p-1}b^{p-k}a^{k} - b^{p-(k+1)}a^{k+1}$$
$$= b^{p-0}a^{0} - b^{p-(p-1+1)}a^{p-1+1} \quad [\text{telescoping sum}]$$
$$= b^{p} - a^{p}$$

b)
$$n^p < \frac{(n+1)^{p+1} - n^{p+1}}{p+1} < (n+1)^p$$

Proof. Use the formula from a) for the case p + 1 and plug in b = n + 1 and a = n. This gives

$$(n+1)^{p+1} - n^{p+1} = (n+1-n)\sum_{k=0}^{p} (n+1)^{p-k} n^k = \sum_{k=0}^{p} (n+1)^{p-k} n^k$$

Apply the inequality $n^k < (n+1)^k$ for k = 1, ..., p on the right hand side to get

$$(n+1)^{p+1} - n^{p+1} < \sum_{k=0}^{p} (n+1)^{p-k} (n+1)^k = \sum_{k=0}^{p} (n+1)^p$$

The right hand side consists of (p+1) copies of $(n+1)^p$ so we get

$$(n+1)^{p+1} - n^{p+1} < (p+1)(n+1)^p$$

The other inequality is similar. Apply the inequality $(n+1)^k > n^k$ for k = 1, ..., pon the right hand side to get

$$(n+1)^{p+1} - n^{p+1} = \sum_{k=0}^{p} (n+1)^{p-k} n^{k}$$

>
$$\sum_{k=0}^{p} n^{p-k} n^{k} = \sum_{k=0}^{p} n^{p}$$

= $(p+1)n^{p}$

c)
$$\sum_{k=1}^{n-1} k^p < \frac{n^{p+1}}{p+1} < \sum_{k=1}^n k^p$$
 (*)

Proof. Use induction on n. The formula is true for n = 1:

$$0 = \sum_{k=1}^{0} k^{p} < \frac{1^{p+1}}{p+1} < \sum_{k=1}^{1} k^{p}$$

We assume the inequalities (*) are true for n, and prove they hold for n + 1. The left hand side of (*) for n + 1 looks like:

$$\begin{split} \sum_{k=1}^{n} k^{p} &= \left(\sum_{k=1}^{n-1} k^{p}\right) + n^{p} \\ &< \frac{n^{p+1}}{p+1} + n^{p} \quad [\text{induction hypothesis}] \\ &< \frac{(n+1)^{p+1}}{p+1} \quad [\text{by part b})] \end{split}$$

so the left inequality is true for n + 1. The right hand side of (*) for n + 1 is:

$$\sum_{k=1}^{n+1} k^p = \left(\sum_{k=1}^n k^p\right) + (n+1)^p$$

> $\frac{n^{p+1}}{p+1} + (n+1)^p$ [induction hypothesis]
> $\frac{(n+1)^{p+1}}{p+1}$ [by part b)]

Problem 2 Let A and B be non-empty sets of real numbers bounded above and below, respectively.

a) If $k < \sup A$ then there is a number $a \in A$ such that k < a.

Proof. Suppose statement a) is false. Then there is some $k < \sup A$ such that $k \ge a$ for all $a \in A$. Therefore, k is an upper bound for A. Since $\sup A$ is the *least* upper

bound for A, it must be less than k: $\sup A \leq k$. But this contradicts $k < \sup A$. Therefore statement a) must be true.

b) If $h > \inf B$ then there is a number $b \in B$ such that b < h.

Proof. Suppose statement b) is false. Then there is some $h > \inf B$ such that $b \ge h$ for all $b \in B$. Therefore, h is a lower bound for B. Since $\inf B$ is the greatest lower bound for B, it must be greater than h: $\inf B \ge h$. But this contradicts $h > \inf B$. Therefore, statement b) must be true.

Problem 3 Let A and B be non-empty sets of real numbers with A contained in B.

a) If A and B are bounded above, then $\sup A \leq \sup B$.

Proof. Let $k = \sup B$ and suppose $k < \sup A$. By 2a), there is a number $a \in A$ such that k < a. Since $k = \sup B \ge b$ for all $b \in B$, the number a cannot be in B. But this contradicts the assumption that B contains A. Since assuming $k < \sup A$ leads to a contradiction, it must be that $\sup A \le k$, i.e., $\sup A \le \sup B$.

b) If A and B are bounded below, then $\inf B \leq \inf A$.

Proof. Let $h = \inf B$ and suppose $h > \inf A$. By 2b), there is a number $a \in A$ such that a < h. Since $h = \inf B \le b$ for all b in B, the number a cannot be in B. But this contradicts the assumption that B contains A. Since assuming $h > \inf A$ leads to a contradiction, it must be that $h \le \inf A$, i.e., $\inf B \le \inf A$.

Problem 4 For $0 \le x \le 1$ define

 $f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$

a) If s and t are step functions satisfying $s(x) \le f(x) \le t(x)$ for all $0 \le x \le 1$, then $s(x) \le 0$ and $t(x) \ge 1$, except possibly at partition points.

Proof. Let $P = \{x_0, x_1, ..., x_n\}$ be a common refinement of partitions for s and t so that s and t are constant on the open subintervals of P: $s(x) = s_k$ and $t(x) = t_k$ for $x_{k-1} < x < x_k$, k = 1, ..., n. By assumption, $s_k \leq f(x) \leq t_k$ for $x_{k-1} < x < x_k$. Let q_k be a rational number and r_k an irrational number in the open interval (x_{k-1}, x_k) , for k = 1, ..., n. Then $s_k \leq f(r_k) = 0$ and $1 = f(q_k) \leq t_k$ for k = 1, ..., n. Therefore, $s(x) \leq 0$ and $t(x) \geq 1$, except possibly at partition points.

b) The lower integral of f, $\underline{I}(f) = 0$, and the upper integral of f, $\overline{I}(f) = 1$. Hence f cannot be integrable by Theorem 1.9.

Proof. Let s and t be step functions as in part a). Then

$$\int_0^1 s(x) \, dx = \sum_{k=1}^n s_k (x_k - x_{k-1}) \le \sum_{k=1}^n 0(x_k - x_{k-1}) = 0$$

and

$$\int_0^1 t(x) \, dx = \sum_{k=1}^n t_k (x_k - x_{k-1}) \ge \sum_{k=1}^n 1(x_k - x_{k-1}) = 1.$$

We conclude that every number in the set

$$S = \left\{ \int_0^1 s(x) \, dx \mid s \le f \right\}$$

is ≤ 0 and every number in the set

$$T = \left\{ \int_0^1 t(x) \, dx \mid f \le t \right\}$$

is ≥ 1 . Therefore $\underline{I}(f) = \sup S \leq 0$ and $\overline{I}(f) = \inf T \geq 1$. Notice also that the constant step functions s(x) = 0 and t(x) = 1 satisfy $s(x) \leq f(x) \leq t(x)$ for all $0 \leq x \leq 1$, so $0 \in S$ and $1 \in T$. Therefore $\underline{I}(f) = \sup S = 0$ and $\overline{I}(f) = \inf T = 1$. \Box