MATH 165: HONORS CALCULUS I ASSIGNMENT 9 SOLUTIONS

Problem 1 p.45, \#13
a) $b^{p}-a^{p}=(b-a) \sum_{k=0}^{p-1} b^{p-k-1} a^{k}$.

Proof.

$$
\begin{aligned}
(b-a) \sum_{k=0}^{p-1} b^{p-k-1} a^{k} & =\sum_{k=0}^{p-1} b b^{p-k-1} a^{k}-a b^{p-k-1} a^{k} \\
& =\sum_{k=0}^{p-1} b^{p-k} a^{k}-b^{p-(k+1)} a^{k+1} \\
& =b^{p-0} a^{0}-b^{p-(p-1+1)} a^{p-1+1} \quad \text { [telescoping sum] } \\
& =b^{p}-a^{p}
\end{aligned}
$$

b) $n^{p}<\frac{(n+1)^{p+1}-n^{p+1}}{p+1}<(n+1)^{p}$

Proof. Use the formula from a) for the case $p+1$ and plug in $b=n+1$ and $a=n$. This gives

$$
(n+1)^{p+1}-n^{p+1}=(n+1-n) \sum_{k=0}^{p}(n+1)^{p-k} n^{k}=\sum_{k=0}^{p}(n+1)^{p-k} n^{k}
$$

Apply the inequality $n^{k}<(n+1)^{k}$ for $k=1, \ldots, p$ on the right hand side to get

$$
(n+1)^{p+1}-n^{p+1}<\sum_{k=0}^{p}(n+1)^{p-k}(n+1)^{k}=\sum_{k=0}^{p}(n+1)^{p}
$$

The right hand side consists of $(p+1)$ copies of $(n+1)^{p}$ so we get

$$
(n+1)^{p+1}-n^{p+1}<(p+1)(n+1)^{p}
$$

The other inequality is similar. Apply the inequality $(n+1)^{k}>n^{k}$ for $k=1, \ldots, p$ on the right hand side to get

$$
\begin{aligned}
(n+1)^{p+1}-n^{p+1} & =\sum_{k=0}^{p}(n+1)^{p-k} n^{k} \\
& >\sum_{k=0}^{p} n^{p-k} n^{k}=\sum_{k=0}^{p} n^{p} \\
& =(p+1) n^{p}
\end{aligned}
$$

c) $\sum_{k=1}^{n-1} k^{p}<\frac{n^{p+1}}{p+1}<\sum_{k=1}^{n} k^{p}(*)$

Proof. Use induction on n. The formula is true for $n=1$:

$$
0=\sum_{k=1}^{0} k^{p}<\frac{1^{p+1}}{p+1}<\sum_{k=1}^{1} k^{p}
$$

We assume the inequalities $\left(^{*}\right)$ are true for n, and prove they hold for $n+1$. The left hand side of $\left(^{*}\right)$ for $n+1$ looks like:

$$
\begin{aligned}
\sum_{k=1}^{n} k^{p} & =\left(\sum_{k=1}^{n-1} k^{p}\right)+n^{p} \\
& <\frac{n^{p+1}}{p+1}+n^{p} \quad[\text { induction hypothesis }] \\
& <\frac{(n+1)^{p+1}}{p+1} \quad[\text { by part b) }]
\end{aligned}
$$

so the left inequality is true for $n+1$. The right hand side of $\left(^{*}\right)$ for $n+1$ is:

$$
\begin{aligned}
\sum_{k=1}^{n+1} k^{p} & =\left(\sum_{k=1}^{n} k^{p}\right)+(n+1)^{p} \\
& >\frac{n^{p+1}}{p+1}+(n+1)^{p} \quad[\text { induction hypothesis }] \\
& \left.>\frac{(n+1)^{p+1}}{p+1} \quad[\text { by part b})\right]
\end{aligned}
$$

Problem 2 Let A and B be non-empty sets of real numbers bounded above and below, respectively.
a) If $k<\sup A$ then there is a number $a \in A$ such that $k<a$.

Proof. Suppose statement a) is false. Then there is some $k<\sup A$ such that $k \geq a$ for all $a \in A$. Therefore, k is an upper bound for A. Since $\sup A$ is the least upper
bound for A, it must be less than $k: \sup A \leq k$. But this contradicts $k<\sup A$. Therefore statement a) must be true.
b) If $h>\inf B$ then there is a number $b \in B$ such that $b<h$.

Proof. Suppose statement b) is false. Then there is some $h>\inf B$ such that $b \geq h$ for all $b \in B$. Therefore, h is a lower bound for B. Since $\inf B$ is the greatest lower bound for B, it must be greater than $h: \inf B \geq h$. But this contradicts $h>\inf B$. Therefore, statement b) must be true.

Problem 3 Let A and B be non-empty sets of real numbers with A contained in B.
a) If A and B are bounded above, then $\sup A \leq \sup B$.

Proof. Let $k=\sup B$ and suppose $k<\sup A$. By 2a), there is a number $a \in A$ such that $k<a$. Since $k=\sup B \geq b$ for all $b \in B$, the number a cannot be in B. But this contradicts the assumption that B contains A. Since assuming $k<\sup A$ leads to a contradiction, it must be that $\sup A \leq k$, i.e., $\sup A \leq \sup B$.
b) If A and B are bounded below, then $\inf B \leq \inf A$.

Proof. Let $h=\inf B$ and suppose $h>\inf A$. By 2 b), there is a number $a \in A$ such that $a<h$. Since $h=\inf B \leq b$ for all b in B, the number a cannot be in B. But this contradicts the assumption that B contains A. Since assuming $h>\inf A$ leads to a contradiction, it must be that $h \leq \inf A$, i.e., $\inf B \leq \inf A$.

Problem 4 For $0 \leq x \leq 1$ define

$$
f(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

a) If s and t are step functions satisfying $s(x) \leq f(x) \leq t(x)$ for all $0 \leq x \leq 1$, then $s(x) \leq 0$ and $t(x) \geq 1$, except possibly at partition points.

Proof. Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a common refinement of partitions for s and t so that s and t are constant on the open subintervals of $P: s(x)=s_{k}$ and $t(x)=t_{k}$ for $x_{k-1}<x<x_{k}, k=1, \ldots, n$. By assumption, $s_{k} \leq f(x) \leq t_{k}$ for $x_{k-1}<x<x_{k}$. Let q_{k} be a rational number and r_{k} an irrational number in the open interval $\left(x_{k-1}, x_{k}\right)$, for $k=1, \ldots, n$. Then $s_{k} \leq f\left(r_{k}\right)=0$ and $1=f\left(q_{k}\right) \leq t_{k}$ for $k=1, \ldots, n$. Therefore, $s(x) \leq 0$ and $t(x) \geq 1$, except possibly at partition points.
b) The lower integral of $f, \underline{I}(f)=0$, and the upper integral of $f, \bar{I}(f)=1$. Hence f cannot be integrable by Theorem 1.9.
Proof. Let s and t be step functions as in part a). Then

$$
\int_{0}^{1} s(x) d x=\sum_{k=1}^{n} s_{k}\left(x_{k}-x_{k-1}\right) \leq \sum_{k=1}^{n} 0\left(x_{k}-x_{k-1}\right)=0
$$

and

$$
\int_{0}^{1} t(x) d x=\sum_{k=1}^{n} t_{k}\left(x_{k}-x_{k-1)}\right) \geq \sum_{k=1}^{n} 1\left(x_{k}-x_{k-1}\right)=1
$$

We conclude that every number in the set

$$
S=\left\{\int_{0}^{1} s(x) d x \mid s \leq f\right\}
$$

is ≤ 0 and every number in the set

$$
T=\left\{\int_{0}^{1} t(x) d x \mid f \leq t\right\}
$$

is ≥ 1. Therefore $\underline{I}(f)=\sup S \leq 0$ and $\bar{I}(f)=\inf T \geq 1$. Notice also that the constant step functions $s(x)=0$ and $t(x)=1$ satisfy $s(x) \leq f(x) \leq t(x)$ for all $0 \leq$ $x \leq 1$, so $0 \in S$ and $1 \in T$. Therefore $\underline{I}(f)=\sup S=0$ and $\bar{I}(f)=\inf T=1$.

