MATH 165: HONORS CALCULUS I ASSIGNMENT 11 SOLUTIONS

Problem 1 Let $A = \left\{ 1 + \frac{1}{n} - \frac{1}{m} \mid n, m \in \right\}$. Prove that $\sup A = 2$ and $\inf A = 0$.

Proof. We first show $\sup A = 2$. For any $n, m \in \frac{1}{n} \le 1$ and $-\frac{1}{m} < 0$, so $1 + \frac{1}{n} - \frac{1}{m} \le 1 + 1 - \frac{1}{m} < 2$

Thus, 2 is an upper bound for A. Since $\sup A$ is the *least* upper bound, it is \leq any other upper bound; in particular, $\sup A \leq 2$. To show $\sup A = 2$, we eliminate the other possibility, $\sup A < 2$, by showing that leads to a contradiction. So suppose $h = \sup A < 2$. Since $2 - \frac{1}{m} \in A$ for all $m \in$, and h is an upper bound for A, we get $2 - \frac{1}{m} \leq h < 2$ for all $m \in$. But this implies that $m \leq \frac{1}{2-h}$ for all $m \in$. We know this is impossible becase is unbounded. In fact, $\left[\frac{1}{2-h}\right] + 1$ is a positive integer that is greater than $\frac{1}{2-h}$. This contradiction implies that $\sup A = 2$. Now we prove $\inf A = 0$. Since $\frac{1}{n} > 0$ and $-\frac{1}{m} \geq -1$ for all $n, m \in$, we get $1 + \frac{1}{n} - \frac{1}{m} \geq 1 + \frac{1}{n} - 1 > 0$

So, 0 is a lower bound for A. Since $\inf A$ is the greatest lower bound, $\inf A \ge 0$. Suppose $k = \inf A > 0$. Then, since $\frac{1}{n} \in A$ for all $n \in$ and k is a lower bound for A, $0 < k \le \frac{1}{n}$ for all $n \in$. This implies that $n \le 1/k$ for all $n \in$ which is clearly impossible. In fact, $\left[\frac{1}{k}\right] + 1$ is a positive integer that is greater than $\frac{1}{k}$. This contradiction implies that $\inf A = 0$.

Problem 2 Define

$$f(x) = \begin{cases} 0 & \text{if } x = 1/n \text{ for some } n \in \\ 1 & \text{otherwise} \end{cases}$$

Prove that f(x) is integrable on [0, 1].

Proof. Fix $n \in$ and define a step function s_n by

$$s_n(x) = \begin{cases} 0 & \text{if } 0 \le x \le 1/n \\ f(x) & \text{if } 1/n < x \le 1 \end{cases}$$

A partition for s_n is given by the points $x_0 = 0$, $x_1 = 1/n$, $x_2 = 1/(n-1)$, ..., $x_{n-1} = 1/2$, $x_n = 1$. Define a second step function by t(x) = 1 for $0 \le x \le 1$. Then

$$s_n(x) \le f(x) \le t(x)$$
 for all $0 \le x \le 1$

The integrals of these steps functions are easy to calculate:

$$\int_{0}^{1} s_{n} = \sum_{k=1}^{n} s_{k}(x_{k} - x_{k-1}) = 0(x_{1} - x_{0}) + \sum_{k=2}^{n} 1(x_{k} - x_{k-1})$$
$$= x_{n} - x_{1} = 1 - \frac{1}{n}$$
$$\int_{0}^{1} t = 1$$

Since $\int_0^1 s \leq \underline{I}(f) \leq \overline{I}(f) \leq \int_0^1 t$ for any step functions satisfying $s(x) \leq f(x) \leq t(x)$ on [0, 1], we see that

$$1 - \frac{1}{n} \le \underline{I}(f) \le \overline{I}(f) \le 1$$

and these inequlities must hold for any $n \in$. Since I = 1 is the only number that satisfies

$$1 - \frac{1}{n} \le I \le 1$$
 for all $n \in$

we conclude that $\underline{I}(f) = \overline{I}(f) = 1$. Therefore f is integrable and $\int_0^1 f = 1$. \Box

Problem 3 Use Theorem 1.14 to find an approximation to the integral $\int_{1}^{2} \frac{1}{x} dx$ so that the error is < .05.

Solution. The function $f(x) = \frac{1}{x}$ is decreasing on [1,2]. The partition points for n subintervals of equal length are given by $x_k = 1 + k\frac{1}{n}$, for k = 1, ..., n. Let

$$B_n = \frac{1}{n} \sum_{k=1}^n f(x_k) = \frac{1}{n} \sum_{k=1}^n \frac{1}{1+k\frac{1}{n}} = \sum_{k=1}^n \frac{1}{n+k}$$

By Theorem 1.14,

$$B_n \le \int_1^2 \frac{1}{x} \, dx \le B_n + E_n$$

where

$$E_n = \frac{(f(1) - f(2))(2 - 1)}{n} = \frac{1}{2n}$$

If we take our approximation to be the midpoint of the interval $[B_n, B_n + E_n]$, namely $A_n = B_n + E_n/2$, then the true value of the integral will lie with $\pm E_n/2$ of A_n . We would like this error to be less than 0.05:

$$\frac{1}{2}E_n < 0.05 \Longleftrightarrow \frac{1}{4n} < 0.05 \Longleftrightarrow n > \frac{1}{4 \cdot 0.05} = 5$$

Therefore, the desired approximation is

$$A_{6} = B_{6} + \frac{1}{2}E_{6}$$

$$= \left(\frac{1}{6+1} + \frac{1}{6+2} + \frac{1}{6+3} + \frac{1}{6+4} + \frac{1}{6+5} + \frac{1}{6+6}\right) + \frac{1}{2}\frac{1}{2 \cdot 6}$$

$$= 0.694877$$

The actual value of this integral is $\log(2) = 0.693147$ and the error of our approximation is 0.694877 - 0.693147 = 0.00173 < 0.05.