Math 165: Honors Calculus I
Assignment 16 Oct. 9, 1998

1. Show that $\lim _{x \rightarrow 0^{+}} \sqrt{x}=0$.
(Hint: $0<x<\delta \Rightarrow 0<\sqrt{x}<\sqrt{\delta}$.)
2. Show that $\lim _{x \rightarrow 0^{+}} x^{1 / n}=0$ for $n \in$.
3. Show that $\lim _{x \rightarrow 0^{-}} x^{1 / n}=0$ for n an odd positive integer.
4. Let $f(x)=\frac{|x|}{x}$ for $x \neq 0$. Use one-sided limits to show that $\lim _{x \rightarrow 0} f(x)$ does not exist.
5. Let $f(x)=x^{2}$ and let $p \in$.
a) Show that if $|x-p|<1$ then $|x|<|p|+1$.
(Hint: consider $||x|-|p|| \leq|x-p|$.)
b) Show that if $|x-p|<1$ then $\left|x^{2}-p^{2}\right|<(2|p|+1)|x-p|$.
c) Show that $\lim _{x \rightarrow p} x^{2}=p^{2}$.
(Hint: $\operatorname{try} \delta=\min \left(1, \frac{\epsilon}{2|p|+1}\right)$.)
