MATH 165: HONORS CALCULUS I
 EXAM I SOLUTIONS

(1) Use the axioms for the real numbers to prove the following statements.
a) $0 \cdot a=0$ for all $a \in$

Proof.

$$
\begin{array}{rlrlr}
0+0 & =0 & & {[\text { Axiom } 4]} \\
a(0+0) & =a \cdot 0 & & {[\text { multiply both sides by } a]} \\
a \cdot 0+a \cdot 0 & =a \cdot 0 & & {[\text { Axiom } 3]} \\
-a \cdot 0+a \cdot 0+a \cdot 0 & =-a \cdot 0+a \cdot 0 & & {[\text { add }-a \cdot 0 \text { to both sides }]} \\
0+a \cdot 0 & =0 & & {[\text { Axiom } 5]} \\
a \cdot 0 & =0 & & {[\text { Axiom } 4]}
\end{array}
$$

b) $(-1)(-1)=1$

Proof.

$$
\begin{aligned}
1+(-1) & =0 & & {[\text { Axiom 5] }} \\
(-1)(1+(-1)) & =(-1) 0 & & \text { [multiply both sides by }(-1)] \\
(-1)(1+(-1)) & =0 & & \text { [by a)] } \\
(-1) 1+(-1)(-1) & =0 & & \text { [Axiom 3] } \\
(-1)+(-1)(-1) & =0 & & {[\text { Axiom 4] }} \\
1+(-1)+(-1)(-1) & =1+0 & & \text { [add 1 to both sides] } \\
0+(-1)(-1) & =1 & & \text { [Axioms 4, 5] } \\
(-1)(-1) & =1 & & \text { [Axiom 5] }
\end{aligned}
$$

c) $1>0$

Proof. If $1 \not \not^{+}$, then $-1 \in^{+}$by Axiom $8(1 \neq 0$ by Axiom 4). Then Axiom 7 implies that $(-1)(-1) \in^{+}$. But $(-1)(-1)=1$ by b), a contradiction. Therefore, $1 \in^{+}$.
(2) a) Define an inductive set, S.

Definition. A subset $S \subset$ is inductive if

1) $1 \in S$, and
2) if $x \in S$ then $x+1 \in S$.
b) Define the positive integers, .

Definition. $n \in$ if and only if n is in every inductive set.
c) Prove by induction that for $n \in$,

$$
\sum_{k=1}^{n} k(k-1)=\frac{n^{3}-n}{3}
$$

Proof.

1) The formula holds for $n=1$:

$$
\sum_{k=1}^{1} k(k-1)=1(1-1)=0=\frac{1^{3}-1}{3}
$$

2) Assume the formula holds for n. Then

$$
\begin{aligned}
\sum_{k=1}^{n+1} k(k-1) & =\sum_{k=1}^{n} k(k-1)+(n+1) n \\
& =\frac{n^{3}-n}{3}+n^{2}+n \quad[\text { induction hypothesis }] \\
& =\frac{n^{3}-n+3 n^{2}+3 n}{3} \\
& =\frac{\left(n^{3}+3 n^{2}+3 n+1\right)-(n+1)}{3} \\
& =\frac{(n+1)^{3}-(n+1)}{3}
\end{aligned}
$$

So the formula holds for $n+1$. Therefore, by the Principle of Mathematical Induction, the formula holds for all $n \in$.
(3) a) Define completely $\binom{n}{k}$.

Definition.

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

where $n!$ is defined inductively by $0!=1$ and for $n \geq 1, n!=n \cdot(n-1)$!
b) State the Binomial Theorem.

Theorem. For any $x, y \in$ and $n \in$,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

c) Prove that for any positive integer n,

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} 2^{n-k}=1
$$

Proof. By the Binomial Theorem,

$$
1=(2-1)^{n}=\sum_{k=0}^{n}\binom{n}{k} 2^{n-k}(-1)^{k}
$$

(4) a) For a subset of $S \subset$, define $\sup S$ and $\inf S$.

Definition.

1) $\sup S$ is the least upper bound for S, i.e., $x \leq \sup S$ for all $x \in S$ and if $x \leq B$ for all $x \in S$, then $\sup S \leq B$.
2) $\inf S$ is the greatest lower for S, i.e., $\inf S \leq x$ for all $x \in S$ and if $B \leq x$ for all $x \in S$, then $B \leq \inf S$.
b) Let $S=\left\{\left.\frac{n}{n+1} \right\rvert\, n \in\right\}$. Prove that $\sup S=1$.

Proof. Since $0<1, n<n+1$ for all $n \in$. Thus, $\frac{n}{n+1}<1$ for all $n \in$ showing that 1 is an upper bound for S. In particular, $\sup S \leq 1$. Suppose $k=\sup S<1$. Then $\frac{n}{n+1} \leq k<1$ for all $n \in$. But then, solving for n and using the fact that $1-k>0$, we get $n \leq \frac{k}{1-k}$ for all $n \in$, a contradiction. In fact, $\left[\frac{k}{1-k}\right]+1$ is a positive integer that is greater than $\frac{k}{1-k}$.
(5) Give precise definitions of the following.
a) $\int_{a}^{b} s(x) d x$ where s is a step function on $[a, b]$.

Definition. Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$ on whose subintervals the step function s is constant:

$$
s(x)=s_{k} \quad \text { for } x_{k-1}<x<x_{k}, \quad k=1, \ldots, n
$$

Then the integral of s from a to b is defined to be

$$
\int_{a}^{b} s(x) d x=\sum_{k=1}^{n} s_{k}\left(x_{k}-x_{k-1}\right)
$$

b) The lower integral, $\underline{I}(f)$, of a bounded function f on $[a, b]$.

Definition. Let $S=\left\{\int_{a}^{b} s(x) d x \mid s \leq f\right\}$. Here $s \leq f$ means that s is a step function on $[a, b]$ such that $s(x) \leq f(x)$ for all $x \in[a, b]$. Since f is bounded on $[a, b]$, there is a constant M such that $f(x) \leq M$ for $x \in[a, b]$. This implies that $\int_{a}^{b} s(x) d x \leq M(b-a)$ for any step function $s \leq f$, so the set S is bounded from above. By Axiom 10 , the supremum of S exists and the lower integral is defined to be

$$
\underline{I}(f)=\sup S
$$

c) An integrable function f on $[a, b]$.

Definition. A function f is integrable on $[a, b]$ if f is bounded on $[a, b]$ and there is exactly one number I satisfying

$$
\int_{a}^{b} s(x) d x \leq I \leq \int_{a}^{b} t(x) d x
$$

for all step functions s, t such that $s(x) \leq f(x) \leq t(x)$ for $x \in[a, b]$. (This number I is also denoted by $\int_{a}^{b} f(x) d x$.)
(6) Give precise statements of the following theorems for integrals.
a) Linearity with Respect to the Integrand.

Theorem. If f and g are integrable on $[a, b]$, then for any constants $c_{1}, c_{2} \in$, the function $c_{1} f+c_{2} g$ is also integrable on $[a, b]$ and

$$
\int_{a}^{b} c_{1} f(x)+c_{2} g(x) d x=c_{1} \int_{a}^{b} f(x) d x+c_{2} \int_{a}^{b} g(x) d x
$$

b) Additivity with Respect to the Interval of Integration.

Theorem. Let $a \leq c \leq b$. Then f is integrable on $[a, b]$ if and only if f is integrable on $[a, c]$ and on $[c, b]$. Moreover,

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

c) Comparison Theorem

Theorem. If f and g are integrable on $[a, b]$ and $f(x) \leq g(x)$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
$$

(7) a) By Invariance Under Translation,

$$
\int_{2}^{3}(x-3)^{16} d x=\int_{-1}^{0} x^{16} d x=\frac{0^{17}}{17}-\frac{(-1)^{17}}{17}=\frac{1}{17}
$$

b) $\int_{-1}^{1} \frac{x}{\sqrt{4-x^{4}}} d x=0$. The integral is 0 because $f(x)=\frac{x}{\sqrt{4-x^{4}}}$ is an odd function, $f(-x)=$ $-f(x)$, and the integral is over a balanced interval, $[-1,1]$.
c) Find the area between the graphs of $f(x)=x^{3}$ and $g(x)=3 x^{2}-2 x$ on the interval $[0,2]$.

Solution. The area is defined to be

$$
A=\int_{0}^{2}|f(x)-g(x)| d x
$$

Since $f(x)-g(x)=x^{3}-3 x^{2}+2 x=x(x-1)(x-2)$, we see that $f(x)-g(x)$ is positive on $[0,1]$ and negative on $[1,2]$. Therefore,

$$
\begin{aligned}
A & =\int_{0}^{1} x^{3}-3 x^{2}+2 x d x-\int_{1}^{2} x^{3}-3 x^{2}+2 x d x \\
& =\frac{1}{4} x^{4}-x^{3}+\left.x^{2}\right|_{0} ^{1}-\left.\left(\frac{1}{4} x^{4}-x^{3}+x^{2}\right)\right|_{1} ^{2} \\
& =\frac{1}{4}-1+1-\left(4-\frac{1}{4}-8+1+4-1\right) \\
& =\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
\end{aligned}
$$

(8) Use step functions that are constant on subintervals of equal length to compute a numerical approximation for $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ that is accurate to within ± 0.25.

Solution. Since $f(x)=\frac{1}{1+x^{2}}$ is a decreasing function on $[0,1]$, we know from Theorem 1.14 that

$$
B_{n} \leq \int_{0}^{1} \frac{1}{1+x^{2}} d x \leq B_{n}+E_{n}
$$

where

$$
B_{n}=\frac{1-0}{n} \sum_{k=1}^{n} \frac{1}{1+x_{k}^{2}}
$$

and

$$
E_{n}=\frac{(f(0)-f(1))(1-0)}{n}=\frac{1}{2 n}
$$

The partition points are given by $x_{k}=\frac{k}{n}$. If we choose the midpoint, $B_{n}+\frac{1}{2} E_{n}$, of the interval $\left[B_{n}, B_{n}+E_{n}\right]$ for the approximation, then the approximation will be within ± 0.25 of the true value of the integral when $\frac{1}{2} E_{n}=\frac{1}{4 n}<0.25$. This holds for $n>1$ (!), so we may take $n=2$. The midpoint is then

$$
\begin{aligned}
B_{2}+\frac{1}{2} E_{2} & =\frac{1}{2}\left(\frac{1}{1+\left(\frac{1}{2}\right)^{2}}+\frac{1}{1+1^{2}}\right)+\frac{1}{8} \\
& =\frac{13}{20}+\frac{1}{8}=0.65+0.125=0.775
\end{aligned}
$$

(The true value of the integral is $\frac{\pi}{4} \approx 0.785$).

