
MATH 165: HONORS CALCULUS I
EXAM I SOLUTIONS

(1) Use the axioms for the real numbers to prove the following statements.
a) 0 · a = 0 for all a ∈

Proof.

0 + 0 = 0 [Axiom 4]
a(0 + 0) = a · 0 [multiply both sides by a]

a · 0 + a · 0 = a · 0 [Axiom 3]
−a · 0 + a · 0 + a · 0 = −a · 0 + a · 0 [add −a · 0 to both sides]

0 + a · 0 = 0 [Axiom 5]
a · 0 = 0 [Axiom 4]

b) (−1)(−1) = 1

Proof.

1 + (−1) = 0 [Axiom 5]
(−1)(1 + (−1)) = (−1)0 [multiply both sides by (−1)]
(−1)(1 + (−1)) = 0 [by a)]

(−1)1 + (−1)(−1) = 0 [Axiom 3]
(−1) + (−1)(−1) = 0 [Axiom 4]

1 + (−1) + (−1)(−1) = 1 + 0 [add 1 to both sides]
0 + (−1)(−1) = 1 [Axioms 4, 5]

(−1)(−1) = 1 [Axiom 5]

c) 1 > 0

Proof. If 1 /∈+, then −1 ∈+ by Axiom 8 (1 6= 0 by Axiom 4). Then Axiom 7 implies that
(−1)(−1) ∈+. But (−1)(−1) = 1 by b), a contradiction. Therefore, 1 ∈+.

(2) a) Define an inductive set, S.

Definition. A subset S ⊂ is inductive if
1) 1 ∈ S, and
2) if x ∈ S then x + 1 ∈ S.

b) Define the positive integers, .

Definition. n ∈ if and only if n is in every inductive set.

c) Prove by induction that for n ∈,
n∑

k=1

k(k − 1) =
n3 − n

3

Proof.
1) The formula holds for n = 1:

1∑
k=1

k(k − 1) = 1(1− 1) = 0 =
13 − 1

3
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2) Assume the formula holds for n. Then
n+1∑
k=1

k(k − 1) =
n∑

k=1

k(k − 1) + (n + 1)n

=
n3 − n

3
+ n2 + n [induction hypothesis]

=
n3 − n + 3n2 + 3n

3

=
(n3 + 3n2 + 3n + 1)− (n + 1)

3

=
(n + 1)3 − (n + 1)

3

So the formula holds for n+1. Therefore, by the Principle of Mathematical Induction,
the formula holds for all n ∈.

(3) a) Define completely
(

n

k

)
.

Definition. (
n

k

)
=

n!
(n− k)!k!

where n! is defined inductively by 0! = 1 and for n ≥ 1, n! = n · (n− 1)!

b) State the Binomial Theorem.

Theorem. For any x, y ∈ and n ∈,

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk

c) Prove that for any positive integer n,
n∑

k=0

(−1)k

(
n

k

)
2n−k = 1

Proof. By the Binomial Theorem,

1 = (2− 1)n =
n∑

k=0

(
n

k

)
2n−k(−1)k

(4) a) For a subset of S ⊂, define supS and inf S.

Definition.
1) supS is the least upper bound for S, i.e., x ≤ supS for all x ∈ S and if x ≤ B for all x ∈ S,

then supS ≤ B.
2) inf S is the greatest lower for S, i.e., inf S ≤ x for all x ∈ S and if B ≤ x for all x ∈ S, then

B ≤ inf S.

b) Let S =
{

n

n + 1

∣∣ n ∈
}

. Prove that supS = 1.

Proof. Since 0 < 1, n < n + 1 for all n ∈. Thus,
n

n + 1
< 1 for all n ∈ showing that 1 is an

upper bound for S. In particular, sup S ≤ 1. Suppose k = supS < 1. Then
n

n + 1
≤ k < 1 for

all n ∈. But then, solving for n and using the fact that 1− k > 0, we get n ≤ k

1− k
for all n ∈,

a contradiction. In fact,
[

k

1− k

]
+ 1 is a positive integer that is greater than

k

1− k
.

(5) Give precise definitions of the following.
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a)
∫ b

a

s(x) dx where s is a step function on [a, b].

Definition. Let P = {x0, x1, . . . , xn} be a partition of [a, b] on whose subintervals the step function
s is constant:

s(x) = sk for xk−1 < x < xk, k = 1, . . . , n.

Then the integral of s from a to b is defined to be∫ b

a

s(x) dx =
n∑

k=1

sk(xk − xk−1)

b) The lower integral, I(f), of a bounded function f on [a, b].

Definition. Let S =
{ ∫ b

a

s(x) dx
∣∣ s ≤ f

}
. Here s ≤ f means that s is a step function on [a, b]

such that s(x) ≤ f(x) for all x ∈ [a, b]. Since f is bounded on [a, b], there is a constant M such

that f(x) ≤ M for x ∈ [a, b]. This implies that
∫ b

a

s(x) dx ≤ M(b − a) for any step function

s ≤ f , so the set S is bounded from above. By Axiom 10, the supremum of S exists and the
lower integral is defined to be

I(f) = supS

c) An integrable function f on [a, b].

Definition. A function f is integrable on [a, b] if f is bounded on [a, b] and there is exactly one
number I satisfying ∫ b

a

s(x) dx ≤ I ≤
∫ b

a

t(x) dx

for all step functions s, t such that s(x) ≤ f(x) ≤ t(x) for x ∈ [a, b]. (This number I is also

denoted by
∫ b

a

f(x) dx.)

(6) Give precise statements of the following theorems for integrals.
a) Linearity with Respect to the Integrand.

Theorem. If f and g are integrable on [a, b], then for any constants c1, c2 ∈, the function c1f +c2g
is also integrable on [a, b] and∫ b

a

c1f(x) + c2g(x) dx = c1

∫ b

a

f(x) dx + c2

∫ b

a

g(x) dx

b) Additivity with Respect to the Interval of Integration.

Theorem. Let a ≤ c ≤ b. Then f is integrable on [a, b] if and only if f is integrable on [a, c] and
on [c, b]. Moreover, ∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx

c) Comparison Theorem

Theorem. If f and g are integrable on [a, b] and f(x) ≤ g(x) for all x ∈ [a, b], then∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx

(7) a) By Invariance Under Translation,∫ 3

2

(x− 3)16 dx =
∫ 0

−1

x16 dx =
017

17
− (−1)17

17
=

1
17

b)
∫ 1

−1

x√
4− x4

dx = 0. The integral is 0 because f(x) =
x√

4− x4
is an odd function, f(−x) =

−f(x), and the integral is over a balanced interval, [−1, 1].



4 MATH 165: HONORS CALCULUS I EXAM I SOLUTIONS

c) Find the area between the graphs of f(x) = x3 and g(x) = 3x2 − 2x on the interval [0, 2].

Solution. The area is defined to be

A =
∫ 2

0

|f(x)− g(x)| dx

Since f(x)− g(x) = x3 − 3x2 + 2x = x(x− 1)(x− 2), we see that f(x)− g(x) is positive on [0, 1]
and negative on [1, 2]. Therefore,

A =
∫ 1

0

x3 − 3x2 + 2x dx−
∫ 2

1

x3 − 3x2 + 2x dx

=
1
4
x4 − x3 + x2

∣∣∣∣1
0

−
(1
4
x4 − x3 + x2

)∣∣∣∣2
1

=
1
4
− 1 + 1−

(
4− 1

4
− 8 + 1 + 4− 1

)
=

1
4

+
1
4

=
1
2

(8) Use step functions that are constant on subintervals of equal length to compute a numerical approx-

imation for
∫ 1

0

1
1 + x2

dx that is accurate to within ±0.25.

Solution. Since f(x) =
1

1 + x2
is a decreasing function on [0, 1], we know from Theorem 1.14 that

Bn ≤
∫ 1

0

1
1 + x2

dx ≤ Bn + En

where

Bn =
1− 0

n

n∑
k=1

1
1 + x2

k

and

En =
(f(0)− f(1))(1− 0)

n
=

1
2n

The partition points are given by xk =
k

n
. If we choose the midpoint, Bn +

1
2
En, of the interval

[Bn, Bn + En] for the approximation, then the approximation will be within ±0.25 of the true value

of the integral when
1
2
En =

1
4n

< 0.25. This holds for n > 1 (!), so we may take n = 2. The
midpoint is then

B2 +
1
2
E2 =

1
2

(
1

1 + ( 1
2 )2

+
1

1 + 12

)
+

1
8

=
13
20

+
1
8

= 0.65 + 0.125 = 0.775

(The true value of the integral is
π

4
≈ 0.785).


