MATH 165: HONORS CALCULUS I EXAM II SOLUTIONS

(1) a) $\lim _{x \rightarrow p} f(x)=A$ means given any $\epsilon>0$ there is a $\delta>0$ such that if $|x-p|<\delta$ then $|f(x)-A|<\epsilon$.
b) A function f is continuous at p if f is defined in a neighborhood of p and $\lim _{x \rightarrow p} f(x)=f(p)$.
c) The inverse of $f(x)$ is a function $g(x)$ whose domain is the range of f and satisfies: $y=f(x)$ if and only if $g(y)=x$.
d) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
(2) a) Basic Limit Theorems. Let f and g be function such that $\lim _{x \rightarrow p} f(x)=A$ and $\lim _{x \rightarrow p} g(x)=B$. Then
i) $\lim _{x \rightarrow p}[f(x)+g(x)]=A+B$,
ii) $\lim _{x \rightarrow p}[f(x)-g(x)]=A-B$,
iii) $\lim _{x \rightarrow p}[f(x) \cdot g(x)]=A \cdot B$,
iv) $\lim _{x \rightarrow p}[f(x) / g(x)]=A / B$, if $B \neq 0$.
b) Intermediate Value Theorem. Let f be continuous on $[a, b]$ and let $x_{1}<x_{2}$ be points in $[a, b]$ such that $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Then for any value k between $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ there is at least one point $c \in\left[x_{1}, x_{2}\right]$ such that $f(p)=c$.
c) Extreme Value Theorem. Let f be continuous on $[a, b]$. Then f has a maximum and a minimum in $[a, b]$, that is, there are points $c, d \in[a, b]$ such that $f(c) \leq f(x) \leq f(d)$ for all $x \in[a . b]$.
d) Mean Value Theorem for Integrals. Let f be continuous on $[a, b]$. Then f attains its average value at some point in $[a, b]$, that is, there is a $p \in[a, b]$ such that

$$
f(p)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

(3) a) $\lim _{x \rightarrow 1}(x-1) \sin \frac{x}{x-1}=0$. This follows from the Squeezing Principle: $-1 \leq \sin \frac{x}{x-1} \leq 1$ for all $x \neq 1$, so $-|x-1| \leq(x-1) \sin \frac{x}{x-1} \leq|x-1|$. Since the outside terms, $\pm|x-1|$, approach 0 , the middle term also approaches 0 .
b)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x^{2}} & =\lim _{x \rightarrow 0} \frac{(\cos (x)-1)(\cos (x)+1)}{x^{2}(\cos (x)+1)}=\lim _{x \rightarrow 0} \frac{\cos ^{2}(x)-1}{x^{2}(\cos (x)+1)} \\
& =\lim _{x \rightarrow 0} \frac{-\sin ^{2}(x)}{x^{2}} \frac{1}{\cos (x)+1}=\lim _{x \rightarrow 0}-\left[\frac{\sin (x)}{x}\right]^{2} \frac{1}{\cos (x)+1} \\
& =-1^{2} \cdot \frac{1}{2}=-\frac{1}{2}
\end{aligned}
$$

c)

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} x^{3}-\left[x^{3}\right] & =\lim _{x \rightarrow 2^{-}} x^{3}-\lim _{x \rightarrow 2^{-}}\left[x^{3}\right] \quad \text { (both left-sided limits exist) } \\
& \left.=8-7=1 \quad \text { if } 1.95<x<2 \text { then }\left[x^{3}\right]=7\right)
\end{aligned}
$$

d) Since the right-hand limit, $\lim _{x \rightarrow 0^{+}} x\left|1+\frac{1}{x}\right|=\lim _{x \rightarrow 0^{+}} \frac{x}{|x|}|x+1|=1 \cdot|0+1|=1$, does not equal the left-hand limit, $\lim _{x \rightarrow 0^{-}} \frac{x}{|x|}|x+1|=-1 \cdot|0+1|=-1$, the limit $\lim _{x \rightarrow 0} x\left|1+\frac{1}{x}\right|$ does not exist.
(4) a) Let $f(x)=x^{2 / 3}+x^{-1}, x>0$. Then, by the power rule, $f^{\prime}(x)=(2 / 3) x^{2 / 3-1}+(-1) x^{-1-1}=$ $(2 / 3) x^{-1 / 3}-x^{-2}$.
b) Let a and b be constants, not both zero, and let $f(x)=\frac{a x+b}{a-b x}$. Then, by the quotient rule, $f^{\prime}(x)=\frac{a(a-b x)-(-b)(a x+b)}{(a-b x)^{2}}=\frac{a^{2}+b^{2}}{(a-b x)^{2}}>0$ for all $x \neq a / b$.
c) Let $f(x)=(a x+b) \cos (x)+(c x+d) \sin (x)$. Determine values of the constants a, b, c, d, such that $f^{\prime}(x)=x \sin (x)$.
Solution. By the power rule, $f^{\prime}(x)=a \cos (x)-(a x+b) \sin (x)+c \sin (x)+(c x+d) \cos (x)=(c x+d+$ a) $\cos (x)+(-a x-b+c) \sin (x)$. This equals $x \sin (x)$ when $-a=1,-b+c=0, c=0$, and $d+a=0$, i.e., when $a=-1, b=c=0$, and $d=1$. Thus $f(x)=-x \cos (x)+\sin (x)$.
(5) Let f be an integrable function on $[a, b]$ and let $F(x)=\int_{a}^{x} f(t) d t$. Prove that F is continuous at $c \in[a, b]$.
Proof. It is enough to show that $\lim _{x \rightarrow c} F(x)-F(c)=0$. First note that

$$
F(x)-F(c)=\int_{a}^{x} f(x) d x-\int_{a}^{c} f(x) d x=\int_{c}^{x} f(x) d x
$$

Since f is integrable on $[a, b]$, it is bounded on $[a, b]$ by definition, so there is a constant $M>0$ such that $-M \leq f(x) \leq M$ for all $x \in[a, b]$. This implies that $-M|x-c| \leq \int_{c}^{x} f(x) d x \leq M|x-c|$, so $|F(x)-F(c)|<M|x-c|$. Given any $\epsilon>0$, let $\delta=\epsilon / M$. If $|x-c|<\delta$, then $|F(x)-F(c)|<M|x-c|<$ $M \delta=\epsilon$.
(6) Let $n \geq 2$ be a positive integer. Prove that the polynomial $f(x)=x^{n}-n x+1$ has a root in $[0,1]$. Proof. If $n=2$, then $f(x)=x^{2}-2 x+1$ and $f(1)=0$. So we may assume $n>2$. Since $f(0)=1$ and $f(1)=1-n+1<0$, Balzano's theorem implies that there is a $c \in[0,1]$ such that $f(c)=0$.
(7) Find the largest interval I containing $x=1$ on which the function $f(x)=\frac{1}{1+x^{2}}$ has an inverse. Give a formula for the corresponding inverse function, $f^{-1}(x)$, as a function of x and determine its domain. Solution. First note that f is strictly decreasing for $x \geq 0$: If $0 \leq x_{1}<x_{2}$ then $1+x_{1}^{2}<1+x_{2}^{2}$ so $f\left(x_{2}\right)=\frac{1}{1+x_{2}}<\frac{1}{1+x_{1}^{2}}=f\left(x_{1}\right)$. Therefore, f is $1-1$ on $[0, \infty)$. Now f cannot be $1-1$ on a larger interval, since any such interval would contain a negative number, say $-a<0$, and $f(-a)=f(a)$ showing that f is not 1-1 on that interval.
To find $f^{-1}(x)$ we solve the equation $y=\frac{1}{1+x^{2}}$ for x to get $x=+\sqrt{\frac{1}{y}-1}$. The range of f on the interval $[0, \infty)$ is $(0,1]$: it is clear that $0<\frac{1}{1+x^{2}} \leq 1$ and any number $0<y \leq 1$ is achieved by $f(x)$ when $x=\sqrt{\frac{1}{y}-1}$. Thus the inverse function is $f^{-1}(x)=\sqrt{\frac{1}{x}-1}$ and its domain is $(0,1]$.
(8) a) Using the definition of continuity, prove that $f(x)=x^{2}$ is continuous at any real number p. Proof. We must show that given any $\epsilon>0$ there is a $\delta>0$ such that if $|x-p|<\delta$ then $|f(x)-f(p)|<\epsilon$. If x is within 1 unit of p, i.e. if $|x-p|<1$, then $|x|<|p|+1$, so $|x+p|<|x|+|p|<2|p|+1$. This allows us to estimate $|f(x)-f(p)|$ in terms of $|x-p|:|f(x)-f(p)|=\left|x^{2}-p^{2}\right|=|x+p||x-p|<(2|p|+1)|x-p|$. Let $\delta=\min \{1, \epsilon /(2|p|+1)\}$. Then $|x-p|<\delta$ implies both $|x-p|<1$ and $|x-p|<\epsilon /(2|p|+1)$ and we get $|f(x)-f(p)|<(2|p|+1)|x-p|<(2|p|+1) \epsilon /(2|p|+1)=\epsilon$.
b) Using the definition of the derivative, prove that the derivative of $f(x)=\sqrt{x}$ is $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$.

Proof.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}=\lim _{h \rightarrow 0} \frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)-x}{h(\sqrt{x+h}+\sqrt{x})}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

