
MATH 165: HONORS CALCULUS I
EXAM II SOLUTIONS

(1) a) lim
x→p

f(x) = A means given any ε > 0 there is a δ > 0 such that if |x− p| < δ then |f(x)−A| < ε.

b) A function f is continuous at p if f is defined in a neighborhood of p and lim
x→p

f(x) = f(p).

c) The inverse of f(x) is a function g(x) whose domain is the range of f and satisfies: y = f(x) if and
only if g(y) = x.

d) f ′(x) = lim
h→0

f(x + h)− f(x)
h

.

(2) a) Basic Limit Theorems. Let f and g be function such that lim
x→p

f(x) = A and lim
x→p

g(x) = B. Then

i) lim
x→p

[f(x) + g(x)] = A + B,

ii) lim
x→p

[f(x)− g(x)] = A−B,

iii) lim
x→p

[f(x) · g(x)] = A ·B,

iv) lim
x→p

[f(x)/g(x)] = A/B, if B 6= 0.

b) Intermediate Value Theorem. Let f be continuous on [a, b] and let x1 < x2 be points in [a, b]
such that f(x1) 6= f(x2). Then for any value k between f(x1) and f(x2) there is at least one point
c ∈ [x1, x2] such that f(p) = c.
c) Extreme Value Theorem. Let f be continuous on [a, b]. Then f has a maximum and a minimum
in [a, b], that is, there are points c, d ∈ [a, b] such that f(c) ≤ f(x) ≤ f(d) for all x ∈ [a.b].
d) Mean Value Theorem for Integrals. Let f be continuous on [a, b]. Then f attains its average
value at some point in [a, b], that is, there is a p ∈ [a, b] such that

f(p) =
1

b− a

∫ b

a

f(x) dx

(3) a) lim
x→1

(x− 1) sin
x

x− 1
= 0. This follows from the Squeezing Principle: −1 ≤ sin

x

x− 1
≤ 1 for all

x 6= 1, so −|x − 1| ≤ (x − 1) sin
x

x− 1
≤ |x − 1|. Since the outside terms, ±|x − 1|, approach 0, the

middle term also approaches 0.
b)

lim
x→0

cos(x)− 1
x2

= lim
x→0

(cos(x)− 1)(cos(x) + 1)
x2(cos(x) + 1)

= lim
x→0

cos2(x)− 1
x2(cos(x) + 1)

= lim
x→0

− sin2(x)
x2

1
cos(x) + 1

= lim
x→0

−
[ sin(x)

x

]2 1
cos(x) + 1

= −12 · 1
2

= −1
2

c)

lim
x→2−

x3 − [x3] = lim
x→2−

x3 − lim
x→2−

[x3] (both left-sided limits exist)

= 8− 7 = 1 (if 1.95 < x < 2 then [x3] = 7)

d) Since the right-hand limit, lim
x→0+

x
∣∣∣1 +

1
x

∣∣∣ = lim
x→0+

x

|x|
|x + 1| = 1 · |0 + 1| = 1, does not equal the

left-hand limit, lim
x→0−

x

|x|
|x + 1| = −1 · |0 + 1| = −1, the limit lim

x→0
x
∣∣∣1 +

1
x

∣∣∣ does not exist.
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(4) a) Let f(x) = x2/3 + x−1, x > 0. Then, by the power rule, f ′(x) = (2/3)x2/3−1 + (−1)x−1−1 =
(2/3)x−1/3 − x−2.

b) Let a and b be constants, not both zero, and let f(x) =
ax + b

a− bx
. Then, by the quotient rule,

f ′(x) =
a(a− bx)− (−b)(ax + b)

(a− bx)2
=

a2 + b2

(a− bx)2
> 0 for all x 6= a/b.

c) Let f(x) = (ax + b) cos(x) + (cx + d) sin(x). Determine values of the constants a, b, c, d, such that
f ′(x) = x sin(x).
Solution. By the power rule, f ′(x) = a cos(x)− (ax + b) sin(x) + c sin(x) + (cx + d) cos(x) = (cx + d +
a) cos(x) + (−ax− b + c) sin(x). This equals x sin(x) when −a = 1, −b + c = 0, c = 0, and d + a = 0,
i.e., when a = −1, b = c = 0, and d = 1. Thus f(x) = −x cos(x) + sin(x).

(5) Let f be an integrable function on [a, b] and let F (x) =
∫ x

a

f(t) dt. Prove that F is continuous at

c ∈ [a, b].
Proof. It is enough to show that lim

x→c
F (x)− F (c) = 0. First note that

F (x)− F (c) =
∫ x

a

f(x) dx−
∫ c

a

f(x) dx =
∫ x

c

f(x) dx

Since f is integrable on [a, b], it is bounded on [a, b] by definition, so there is a constant M > 0 such

that −M ≤ f(x) ≤ M for all x ∈ [a, b]. This implies that −M |x − c| ≤
∫ x

c

f(x) dx ≤ M |x − c|, so

|F (x)−F (c)| < M |x−c|. Given any ε > 0, let δ = ε/M . If |x−c| < δ, then |F (x)−F (c)| < M |x−c| <
Mδ = ε.

(6) Let n ≥ 2 be a positive integer. Prove that the polynomial f(x) = xn − nx + 1 has a root in [0, 1].
Proof. If n = 2, then f(x) = x2 − 2x + 1 and f(1) = 0. So we may assume n > 2. Since f(0) = 1 and
f(1) = 1− n + 1 < 0, Balzano’s theorem implies that there is a c ∈ [0, 1] such that f(c) = 0.

(7) Find the largest interval I containing x = 1 on which the function f(x) =
1

1 + x2
has an inverse. Give

a formula for the corresponding inverse function, f−1(x), as a function of x and determine its domain.
Solution. First note that f is strictly decreasing for x ≥ 0: If 0 ≤ x1 < x2 then 1 + x2

1 < 1 + x2
2 so

f(x2) =
1

1 + x2
<

1
1 + x2

1

= f(x1). Therefore, f is 1-1 on [0,∞). Now f cannot be 1-1 on a larger

interval, since any such interval would contain a negative number, say −a < 0, and f(−a) = f(a)
showing that f is not 1-1 on that interval.

To find f−1(x) we solve the equation y =
1

1 + x2
for x to get x = +

√
1
y
− 1. The range of f on the

interval [0,∞) is (0, 1]: it is clear that 0 <
1

1 + x2
≤ 1 and any number 0 < y ≤ 1 is achieved by f(x)

when x =
√

1
y
− 1. Thus the inverse function is f−1(x) =

√
1
x
− 1 and its domain is (0, 1].

(8) a) Using the definition of continuity, prove that f(x) = x2 is continuous at any real number p.
Proof. We must show that given any ε > 0 there is a δ > 0 such that if |x−p| < δ then |f(x)−f(p)| < ε.
If x is within 1 unit of p, i.e. if |x−p| < 1, then |x| < |p|+1, so |x+p| < |x|+ |p| < 2|p|+1. This allows
us to estimate |f(x)−f(p)| in terms of |x−p|: |f(x)−f(p)| = |x2−p2| = |x+p||x−p| < (2|p|+1)|x−p|.
Let δ = min{1, ε/(2|p|+ 1)}. Then |x− p| < δ implies both |x− p| < 1 and |x− p| < ε/(2|p|+ 1) and
we get |f(x)− f(p)| < (2|p|+ 1)|x− p| < (2|p|+ 1)ε/(2|p|+ 1) = ε.

b) Using the definition of the derivative, prove that the derivative of f(x) =
√

x is f ′(x) =
1

2
√

x
.

Proof.

f ′(x) = lim
h→0

√
x + h−

√
x

h
= lim

h→0

(
√

x + h−
√

x)(
√

x + h +
√

x)
h(
√

x + h +
√

x)

= lim
h→0

(x + h)− x

h(
√

x + h +
√

x)
= lim

h→0

1√
x + h +

√
x

=
1

2
√

x


