Tangent Lines

Example: Find the equation of the tangent line to the graph of y=sin[x] at the point [Graphics:TangentLinesgr1.gif].

Solution: The slope of the tangent line at the point [Graphics:TangentLinesgr2.gif] is [Graphics:TangentLinesgr3.gif]. The point-slope formula for a line gives the equations of the tangent line, [Graphics:TangentLinesgr4.gif]. Here is the graph of y=Sin[x] plotted together with the tangent line.

[Graphics:TangentLinesgr6.gif][Graphics:TangentLinesgr5.gif]
[Graphics:TangentLinesgr6.gif][Graphics:TangentLinesgr7.gif]
     -Graphics-

Example: Show that Sin[x] is approximately equal to x for x near 0.

Solution: The tangent line approximation theorem says that f[x] is approximately equal to for x near a. On our case f[x]=Sin[x], and a=0, so Sin[x] is approximately f[0] + f'[0](x-0) = 0 + 1(x-0) = x. Here is a table of values of x and Sin[x] for x near 0 to compare.

[Graphics:TangentLinesgr6.gif][Graphics:TangentLinesgr8.gif]
     0            0

0.01 0.00999983

0.02 0.0199987

0.03 0.0299955

0.04 0.0399893

0.05 0.0499792

0.06 0.059964

0.07 0.0699428

0.08 0.0799147

0.09 0.0898785

0.1 0.0998334

[Graphics:TangentLinesgr6.gif][Graphics:TangentLinesgr9.gif]
[Graphics:TangentLinesgr6.gif][Graphics:TangentLinesgr10.gif]
     -Graphics-

Example: Find the equation of the line tangent to the curve defined by
[Graphics:TangentLinesgr11.gif]
at the point {4,2}.

Solution: Treating y[x] as an implicitly defined function of x and taking the derivative of the equation of the curve implicitly gives

[Graphics:TangentLinesgr6.gif][Graphics:TangentLinesgr12.gif]
                                  2
y[x] + x y'[x] - Sin[x - y[x] ] (1 - 2 y[x] y'[x]) == 0

[Graphics:TangentLinesgr6.gif][Graphics:TangentLinesgr13.gif]
                                2
-Sin[x - y[x] ] + y[x]
{{y'[x] -> -(-------------------------)}}
2
x + 2 Sin[x - y[x] ] y[x]

Substuting x->4, y->2 gives the slope at this point:

[Graphics:TangentLinesgr6.gif][Graphics:TangentLinesgr14.gif]
[Graphics:TangentLinesgr6.gif][Graphics:TangentLinesgr15.gif]

The equation of the tangent line is then y = 2 - (1/2)(x-4) = 4 - x/2. We can plot the curve defined by the equation using ContourPlot[] with one contour, 9 (a contour has the form f[x]==c and we may choose the values of c).

[Graphics:TangentLinesgr6.gif][Graphics:TangentLinesgr19.gif]

[Graphics:TangentLinesgr6.gif][Graphics:TangentLinesgr23.gif]

[Graphics:TangentLinesgr6.gif][Graphics:TangentLinesgr24.gif]
[Graphics:TangentLinesgr6.gif][Graphics:TangentLinesgr25.gif]
[Graphics:TangentLinesgr6.gif][Graphics:TangentLinesgr26.gif]