Math 165: Honors Calculus I Name
Quiz 4 Sept. 24, 1998

1. a) Define the supremum, $\sup A$, of a subset of real numbers $A \subset$.
b) Let $A=\left\{\left.1-\frac{1}{n} \right\rvert\, n \in\right\}$. Prove $\sup A=1$.
2. Let $f(x)=\frac{1}{x}$ for $x \in[1,2]$. Find step functions s_{n} and t_{n} on $[1,2]$:
(a) that are constant on n open subintervals of equal length,
(b) satisfy $s_{n}(x) \leq f(x) \leq t_{n}(x)$ for all $x \in[1,2]$,
(c) are the best approximation to $f(x)$ by step functions from below and above, respectively, subject to constraints (a) and (b).
(d) Calculate $\int_{1}^{2} s_{n}(x) d x$ and $\int_{1}^{2} t_{n}(x) d x$, and conclude that

$$
\sum_{k=1}^{n} \frac{1}{n+k}<\int_{1}^{2} \frac{1}{x} d x<\sum_{k=0}^{n-1} \frac{1}{n+k}
$$

3. Calculate $\int_{0}^{2}\left|(x-1)^{5}\right| d x$ using only the basic properties of integrals covered so far in the course.
