Name:_____

1. a) Define the supremum, $\sup A$, of a subset of real numbers $A \subset$.

b) Let
$$A = \left\{ 1 - \frac{1}{n} \mid n \in \right\}$$
. Prove $\sup A = 1$.

- 2. Let $f(x) = \frac{1}{x}$ for $x \in [1, 2]$. Find step functions s_n and t_n on [1, 2]:
 - (a) that are constant on n open subintervals of equal length,
 - (b) satisfy $s_n(x) \le f(x) \le t_n(x)$ for all $x \in [1, 2]$,
 - (c) are the best approximation to f(x) by step functions from below and above, respectively, subject to constraints (a) and (b).

(d) Calculate
$$\int_{1}^{2} s_{n}(x) dx$$
 and $\int_{1}^{2} t_{n}(x) dx$, and conclude that

$$\sum_{k=1}^{n} \frac{1}{n+k} < \int_{1}^{2} \frac{1}{x} dx < \sum_{k=0}^{n-1} \frac{1}{n+k}$$

3. Calculate $\int_0^2 |(x-1)^5| dx$ using only the basic properties of integrals covered so far in the course.