Math 165: Honors Calculus I Quiz 6 Oct. 15, 1998 Name:_____

1. Give precise definitions for the following.

a)
$$\lim_{x \to p} f(x) = A.$$

b) f(x) is continuous at p.

2. Let $f(x) = [x]^2$ where [x] is the greatest integer $\leq x$. Use one-sided limits to show that $\lim_{x \to 2} f(x)$ does not exist.

3. Suppose f(x) is a function that has the following property:

if
$$-0.25 < x < 0.25$$
 then $1 - |x|^3 < f(x) < 1 + |x|^3$

The graph of f(x) would thus lie between the curves $y = 1 - |x|^3$ and $y = 1 + |x|^3$, at least for x near 0, and might look something like the following:

Prove, using the definition of limit, that $\lim_{x\to 0} f(x) = 1$.