Math 165: Honors Calculus I
Name:
Quiz 6 Oct. 15, 1998

1. Give precise definitions for the following.
a) $\lim _{x \rightarrow p} f(x)=A$.
b) $f(x)$ is continuous at p.
2. Let $f(x)=[x]^{2}$ where $[x]$ is the greatest integer $\leq x$. Use one-sided limits to show that $\lim _{x \rightarrow 2} f(x)$ does not exist.
3. Suppose $f(x)$ is a function that has the following property:

$$
\text { if }-0.25<x<0.25 \text { then } 1-|x|^{3}<f(x)<1+|x|^{3}
$$

The graph of $f(x)$ would thus lie between the curves $y=1-|x|^{3}$ and $y=1+|x|^{3}$, at least for x near 0 , and might look something like the following:

Prove, using the definition of limit, that $\lim _{x \rightarrow 0} f(x)=1$.

