Math 165: Honors Calculus I
Name:
Quiz 7 Oct. 29, 1998

1. Use the Basic Limit Theorems to prove that if f and g are continuous at p, then $f+g$ and $f \cdot g$ are continuous at p.
2. Use the Squeezing Principle to show $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{3}{x^{2}}\right)=0$.
3. Compute the following limits. Explain which limit theorems you are using in each case.
a) $\lim _{x \rightarrow 1} \frac{x-1}{\sin \left[\left(x^{2}-1\right)\right]}$
b) $\lim _{x \rightarrow 0} \frac{\sqrt{x+9}-3}{x}$
c) $\lim _{x \rightarrow 3} \sqrt{2+\cos \left(\pi x^{2}\right)}$
