Math 165: Honors Calculus I
Name:
Quiz 9 Nov. 12, 1998

1. a) State the Boundedness Theorem for Continuous Functions.
b) Use a) to prove that if f is continuous on $[a, b]$ then f has a maximum on $[a, b]$. (Hint: Let $M=\sup _{[a, b]} f, g(x)=M-f(x)$, and consider $1 / g(x)$.
2. Let $f(x)$ be continuous on $[a, b]$ and let $p \in(a, b)$. Prove that for any $\varepsilon>0$ there exists a neighborhood of $p, N(p) \subset[a, b]$, such that the span of f on $N(p)$ is $<\varepsilon$.
3. Suppose $f(x)$ and $g(x)$ are continuous functions on $[a, b]$ satisfying $f\left(x_{1}\right)<g\left(x_{2}\right)$ for any $x_{1}, x_{2} \in[a, b]$. Prove that there is a constant c such that $f(x)<c<g(x)$ for all $x \in[a, b]$.
