MATH 165: HONORS CALCULUS I
EXAM I SOLUTIONS

(1) Let a € R be an arbitrary real number.

a) Define —a.
Definition. —a is the unique number x such that ¢ +z = 0. It exists by Axiom 5. It is unique
because if 2’ is another such number then a + 2 = 0 = @ + 2’ and adding x to both sides gives
(z+a)+ 2 = (z+a)+ 2, which simplifies to 0+ 2 = 0+ 2’ and 2 = 2’ using Axioms 1, 2 and 4.

b) Prove that 0-a = 0.
Proof. By Axiom 4, 0 + 0 = 0, multiplying by a gives (0 + 0)a = 0 - a, and by Axiom 3,
0-a+0-a=0-a. Now adding —(0-a) to both sides gives —(0-a)+ (0-a+0-a) = —(0-a)+0-a
which simplifies to 0 +0-a = 0 and 0-a = 0 using Axioms 1, 2 and 4, and the definition of
—(0-a).

c¢) Prove that (—1)-a = —a.

Proof. By definition of —1, 1 4+ (—1) = 0. Multiplying by a gives (1 + (=1))a = 0 - a, and by
Axiom 3, 1-a+(—1)-a = 0-a. Using part b) and Axiom 4, this simplifies to a+(—1)-a = 0. Since
—a is the unique number z satisfying a + 2 = 0 (see part a)), we conclude that (—1)-a = —a.

(2) a) Define the positive integers, N.

Definition. n € N if and only if n is in every inductive set. A set S is inductive if 1 € S, and
x4+ 1€ S whenever x € S.

b) Prove that there is no upper bound for N.

Proof. If N has an upper bound, then it has a least upper bound b = sup(N) by Axiom 10. Since
b — 1 cannot be an upper bound of N, there must be some n € N such that b — 1 < n. But then
n+ 1€ Nand b < n+ 1, contradicting the fact that b is an upper bound of N. Therefore, there
can be no upper bound of N.

1
c) Let a >0 and let T = {a(l + H) |n e N}. Prove that a = inf(T).

Proof. Since a/n > 0 for all n € N, a < a+ a/n. Thus, a is a lower bound of T. Suppose b is
another lower bound of 7" and b > a. Then a < b < a + a/n for all n € N. This implies that
0<b—a<a/mnand n <a/(b—a) for all n € N. But then a/(b — a) is an upper bound for N
contradicting part b). Therefore, b < a and a must be the greatest lower bound of T', a = inf(T).

(3) a) Define Zak.
k=1

1 n
Definition. Z ay, is defined to be a; and if Z ay, has been defined for a positive integer n, then
k=1 k=1
n+1 n
Z ay, is defined to be (Zak> + apy1-
k=1 k=1
b) Use induction to prove that for any positive integer n, Z(k -1 < T
k=1
Proof.
1 14
i) The inequality holds for n = 1 since Z(k —1)¥=(01-1P=0< T

k=1
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ii) Assume the inequality holds for n. Then

n+1 n 4
Z(k_1)3 = (Z(k—l)?’)+n3<%+n3:i(n4+4n3)
k=1 k=1
1 1 4
< Z(n4+4n3+6n2+4n+1):%
Use tel . el "2k —1
c) se telescoping sums to calculate Z ST
k=1

Solution.
n n

2k —1 " 2k 1 1 1
> kR sz |~ 2k :Z2k*1(k71)! L

k=1 k=1 k=1
- I 1
2001 2npl onp!

(4) Find the coefficient of 23! in (2 — 7)3° (give its prime factorization).
Solution. By the binomial theorem, the terms in the expansion of (z* — 7)* have the form

(?;CO)(xB)k(f?)m*k. The term containing 2% corresponds to k& = 27. Therefore, the coefficient of

28t is

30y, .3 30-29-28 .. .
(27)( = 3-2-1 (=7)"=—4-5-7"-29

(5) Give precise definitions of the following.
a) A step function s on [a, b].

Definition. A function s(z) is a step function on [a, b] if there is a partition P = {xg,z1,...,2n}
of [a,b] such that s(z) is constant on the open subintervals of P: s(x) = si for z € (xg_1,2%),
k=1,...,n.

b
b) / s(z) dx where s is a step function on [a, b].

b n
Definition. Using the notation of part a), / s(z) dzx is defined to be Z sp(Tr — Tp—1).
a k=1
c¢) The lower integral, I(f), and upper integral, I(f), of a bounded function f on [a, b].
b
Definition. Let S be the set of numbers / s(z) dz where s runs through all the step functions

a

b
on [a,b] below f and let T be the set of numbers / t(x) dr where t runs through all the step

functions on [a,b] above f. Since f is bounded on Ta,b], the sets S and T are non-empty and

bounded from above and below, respectively. By Axiom 10, the supremum of S and the infimum
of T exist. The lower integral of f is defined to be I(f) = sup(S), and the upper integral of f is
defined to be I(f) = inf(T).

b
d) / f(z) dx where f is a bounded function on [a, b].

b b
Definition. If there is exactly one number I satisfying / s(x)de <1< / t(x) dz for all step

b
functions s, ¢ such that s(z) < f(z) < t(z) for x € [a,b], then / f(z) dx is defined to be this
number I. Alternately, if I(f) = I(f) = I, where I(f) and I(f) are defined as in part c), then

/abf(x)dle.

(6) Give precise statements of the following theorems for integrals.
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a) LINEARITY WITH RESPECT TO THE INTEGRAND.

Theorem. If f and g are integrable on [a,b], then for any constants ¢i, co € R, the function
c1f + cag is also integrable on [a, b] and

b b b
[ ar@+ag@i=c [ f@dete [ g
a a a
b) ADDITIVITY WITH RESPECT TO THE INTERVAL OF INTEGRATION.

Theorem. Let a < ¢ < b. Then f is integrable on [a,b] if and only if f is integrable on [a, ] and

on [c, b]. Moreover,
b c b
[ t@ar= [ s@des [ f@)do

¢) COMPARISON THEOREM

Theorem. If f and g are integrable on [a,b] and f(z) < g(z) for all = € [a, b], then
b b
/ f(z)dx §/ g(x)dz

2
(7) Evaluate / 3— 2% — 1| dx.
2

Solution. 2> —1 > 0 if and only if + < —1 or 2 > 1. Using additivity with respect to the interval,
b

the definition of absolute value, and the formula / 2" dr = (0"t —a" ) /(n 4+ 1), we get

a

2 —1 1 2
/3—\x2—1|dx / 3—(x2—1)da:+/ 3+(w2—1)dx+/ 3— (2% —1)da
—2 1

-2 —1

(4—%7)—1—(4—&-%2)—1—(4—%7):8

b
1
(8) Let b > 0. Show that / rdxr = ibz by considering step functions constant on subintervals of equal
0
length.

b
Solution. The partition points for n subintervals of equal length are given by zp = k—, k =
n
0,...,n. Define step functions by

b
s(z) = s = (k—l)ﬁ, Tpo1 < < TR
b
tx) = tp, = k—, Tp1 < <
n

for k =1,...,n (also define s(b) = b and ¢(0) = 0). Since f(x) = z is increasing on [0,b], s(z)
f(z) < t(x) for all z € [0,5)].

IA

b
The integrals of these step functions can be easily calculated since (z — zx—1) = —:
n

/Obs(gc) dx = ki_lsk(xk —Tp_1) = Ié(k— 1)é(ﬁ> = f;k:(k— 1) = %Zn(nT—l) = %b2(1 - l)

Similarly,

b n n 2 n 2
[0St 3o () < e Bl i
k=1

k=1 k=1
There is only one number [ that satisfies
1 1 1 1
—b2<1 - 7) <I< fb2(1 + f)
2 n 2 n

1 ! 1
for all n € N, namely, I = §b2 (see for example, Problem 2c). We conclude that / rdr = §b2.
0



