MATH 165: HONORS CALCULUS I EXAM I SOLUTIONS

- (1) Let $a \in \mathbb{R}$ be an arbitrary real number.
 - a) Define -a. Definition. -a is the unique number x such that a + x = 0. It exists by Axiom 5. It is unique because if x' is another such number then a + x = 0 = a + x' and adding x to both sides gives (x + a) + x = (x + a) + x', which simplifies to 0 + x = 0 + x' and x = x' using Axioms 1, 2 and 4.
 b) Prove that 0 • a = 0.
 - *Proof.* By Axiom 4, 0 + 0 = 0, multiplying by a gives $(0 + 0)a = 0 \cdot a$, and by Axiom 3, $0 \cdot a + 0 \cdot a = 0 \cdot a$. Now adding $-(0 \cdot a)$ to both sides gives $-(0 \cdot a) + (0 \cdot a + 0 \cdot a) = -(0 \cdot a) + 0 \cdot a$ which simplifies to $0 + 0 \cdot a = 0$ and $0 \cdot a = 0$ using Axioms 1, 2 and 4, and the definition of $-(0 \cdot a)$.
 - c) Prove that $(-1) \cdot a = -a$.

Proof. By definition of -1, 1 + (-1) = 0. Multiplying by a gives $(1 + (-1))a = 0 \cdot a$, and by Axiom 3, $1 \cdot a + (-1) \cdot a = 0 \cdot a$. Using part b) and Axiom 4, this simplifies to $a + (-1) \cdot a = 0$. Since -a is the unique number x satisfying a + x = 0 (see part a)), we conclude that $(-1) \cdot a = -a$.

(2) a) Define the positive integers, \mathbb{N} .

Definition. $n \in \mathbb{N}$ if and only if n is in every inductive set. A set S is inductive if $1 \in S$, and $x + 1 \in S$ whenever $x \in S$.

b) Prove that there is no upper bound for \mathbb{N} .

Proof. If \mathbb{N} has an upper bound, then it has a least upper bound $b = \sup(\mathbb{N})$ by Axiom 10. Since b - 1 cannot be an upper bound of \mathbb{N} , there must be some $n \in \mathbb{N}$ such that b - 1 < n. But then $n + 1 \in \mathbb{N}$ and b < n + 1, contradicting the fact that b is an upper bound of \mathbb{N} . Therefore, there can be no upper bound of \mathbb{N} .

c) Let a > 0 and let $T = \left\{ a \left(1 + \frac{1}{n} \right) | n \in \mathbb{N} \right\}$. Prove that $a = \inf(T)$.

Proof. Since a/n > 0 for all $n \in \mathbb{N}$, a < a + a/n. Thus, a is a lower bound of T. Suppose b is another lower bound of T and b > a. Then $a < b \le a + a/n$ for all $n \in \mathbb{N}$. This implies that $0 < b - a \le a/n$ and $n \le a/(b-a)$ for all $n \in \mathbb{N}$. But then a/(b-a) is an upper bound for \mathbb{N} contradicting part b). Therefore, $b \le a$ and a must be the greatest lower bound of T, $a = \inf(T)$.

(3) a) Define
$$\sum_{k=1}^{n} a_k$$
.
Definition. $\sum_{k=1}^{n} a_k$

Definition. $\sum_{k=1}^{n} a_k$ is defined to be a_1 and if $\sum_{k=1}^{n} a_k$ has been defined for a positive integer n, then $\sum_{k=1}^{n+1} a_k$ is defined to be $\left(\sum_{k=1}^{n} a_k\right) + a_{n+1}$.

b) Use induction to prove that for any positive integer n, $\sum_{k=1}^{n} (k-1)^3 < \frac{n^4}{4}$.

Proof.
i) The inequality holds for
$$n = 1$$
 since $\sum_{k=1}^{1} (k-1)^3 = (1-1)^3 = 0 < \frac{1^4}{4}$.

Date: September 30, 1999.

ii) Assume the inequality holds for n. Then

$$\sum_{k=1}^{n+1} (k-1)^3 = \left(\sum_{k=1}^n (k-1)^3\right) + n^3 < \frac{n^4}{4} + n^3 = \frac{1}{4}(n^4 + 4n^3)$$
$$< \frac{1}{4}(n^4 + 4n^3 + 6n^2 + 4n + 1) = \frac{(n+1)^4}{4}$$

c) Use telescoping sums to calculate $\sum_{k=1}^{n} \frac{2k-1}{2^k k!}$

Solution.

$$\sum_{k=1}^{n} \frac{2k-1}{2^{k}k!} = \sum_{k=1}^{n} \frac{2k}{2^{k}k!} - \frac{1}{2^{k}k!} = \sum_{k=1}^{n} \frac{1}{2^{k-1}(k-1)!} - \frac{1}{2^{k}k!}$$
$$= \frac{1}{2^{0}0!} - \frac{1}{2^{n}n!} = 1 - \frac{1}{2^{n}n!}$$

(4) Find the coefficient of x^{81} in $(x^3 - 7)^{30}$ (give its prime factorization).

Solution. By the binomial theorem, the terms in the expansion of $(x^3 - 7)^{30}$ have the form $\binom{30}{k}(x^3)^k(-7)^{30-k}$. The term containing x^{81} corresponds to k = 27. Therefore, the coefficient of x^{81} is

$$\binom{30}{27}(-7)^3 = \frac{30 \cdot 29 \cdot 28}{3 \cdot 2 \cdot 1}(-7)^3 = -4 \cdot 5 \cdot 7^4 \cdot 29$$

- (5) Give precise definitions of the following.
 - a) A step function s on [a, b].

Definition. A function s(x) is a step function on [a, b] if there is a partition $P = \{x_0, x_1, \ldots, x_n\}$ of [a, b] such that s(x) is constant on the open subintervals of P: $s(x) = s_k$ for $x \in (x_{k-1}, x_k)$, $k = 1, \ldots, n$.

b) $\int_{a}^{b} s(x) dx$ where s is a step function on [a, b].

Definition. Using the notation of part a), $\int_{a}^{b} s(x) dx$ is defined to be $\sum_{k=1}^{n} s_{k}(x_{k} - x_{k-1})$.

c) The lower integral, $\underline{I}(f)$, and upper integral, $\overline{I}(f)$, of a bounded function f on [a, b]. *Definition.* Let S be the set of numbers $\int_{a}^{b} s(x) dx$ where s runs through all the step functions

on [a, b] below f and let T be the set of numbers $\int_{a}^{b} t(x) dx$ where t runs through all the step functions on [a, b] above f. Since f is bounded on [a, b], the sets S and T are non-empty and bounded from above and below, respectively. By Axiom 10, the supremum of S and the infimum of T exist. The lower integral of f is defined to be $\underline{I}(f) = \sup(S)$, and the upper integral of f is defined to be $\underline{I}(f) = \inf(T)$.

- d) $\int_{a}^{b} f(x) dx$ where f is a bounded function on [a, b]. *Definition.* If there is *exactly one* number I satisfying $\int_{a}^{b} s(x) dx \leq I \leq \int_{a}^{b} t(x) dx$ for all step functions s, t such that $s(x) \leq f(x) \leq t(x)$ for $x \in [a, b]$, then $\int_{a}^{b} f(x) dx$ is defined to be this number I. Alternately, if $\underline{I}(f) = \overline{I}(f) = I$, where $\underline{I}(f)$ and $\overline{I}(f)$ are defined as in part c), then $\int_{a}^{b} f(x) dx = I$.
- (6) Give precise statements of the following theorems for integrals.

a) Linearity with Respect to the Integrand.

Theorem. If f and g are integrable on [a, b], then for any constants $c_1, c_2 \in \mathbb{R}$, the function $c_1 f + c_2 g$ is also integrable on [a, b] and

EXAM I SOLUTIONS

$$\int_{a}^{b} c_{1}f(x) + c_{2}g(x) \, dx = c_{1} \int_{a}^{b} f(x) \, dx + c_{2} \int_{a}^{b} g(x) \, dx$$

b) Additivity with Respect to the Interval of Integration.

Theorem. Let $a \leq c \leq b$. Then f is integrable on [a, b] if and only if f is integrable on [a, c] and on [c, b]. Moreover,

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

c) Comparison Theorem

Theorem. If f and g are integrable on [a, b] and $f(x) \leq g(x)$ for all $x \in [a, b]$, then

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx$$

(7) Evaluate $\int_{-2}^{2} 3 - |x^2 - 1| dx$.

Solution. $x^2 - 1 \ge 0$ if and only if $x \le -1$ or $x \ge 1$. Using additivity with respect to the interval, the definition of absolute value, and the formula $\int_a^b x^n dx = (b^{n+1} - a^{n+1})/(n+1)$, we get

$$\int_{-2}^{2} 3 - |x^{2} - 1| dx = \int_{-2}^{-1} 3 - (x^{2} - 1) dx + \int_{-1}^{1} 3 + (x^{2} - 1) dx + \int_{1}^{2} 3 - (x^{2} - 1) dx$$
$$= (4 - \frac{1}{3}7) + (4 + \frac{1}{3}2) + (4 - \frac{1}{3}7) = 8$$

(8) Let b > 0. Show that $\int_0^b x \, dx = \frac{1}{2}b^2$ by considering step functions constant on subintervals of equal length.

Solution. The partition points for n subintervals of equal length are given by $x_k = k \frac{b}{n}$, $k = 0, \ldots, n$. Define step functions by

$$s(x) = s_k = (k-1)\frac{b}{n}, \qquad x_{k-1} \le x < x_k$$

$$t(x) = t_k = k\frac{b}{n}, \qquad x_{k-1} < x \le x_k$$

for k = 1, ..., n (also define s(b) = b and t(0) = 0). Since f(x) = x is increasing on $[0, b], s(x) \le f(x) \le t(x)$ for all $x \in [0, b]$.

The integrals of these step functions can be easily calculated since $(x_k - x_{k-1}) = \frac{0}{n}$.

$$\int_{0}^{b} s(x) \, dx = \sum_{k=1}^{n} s_k (x_k - x_{k-1}) = \sum_{k=1}^{n} (k-1) \frac{b}{n} \left(\frac{b}{n}\right) = \frac{b^2}{n^2} \sum_{k=1}^{n} (k-1) = \frac{b^2}{n^2} \frac{n(n-1)}{2} = \frac{1}{2} b^2 \left(1 - \frac{1}{n}\right)$$

Similarly,

$$\int_{0}^{b} t(x) \, dx = \sum_{k=1}^{n} t_k (x_k - x_{k-1}) = \sum_{k=1}^{n} k \frac{b}{n} \left(\frac{b}{n}\right) = \frac{b^2}{n^2} \sum_{k=1}^{n} k = \frac{b^2}{n^2} \frac{n(n+1)}{2} = \frac{1}{2} b^2 \left(1 + \frac{1}{n}\right)$$

There is only one number I that satisfies

$$\frac{1}{2}b^2\left(1-\frac{1}{n}\right) \le I \le \frac{1}{2}b^2\left(1+\frac{1}{n}\right)$$

for all $n \in \mathbb{N}$, namely, $I = \frac{1}{2}b^2$ (see for example, Problem 2c). We conclude that $\int_0^1 x \, dx = \frac{1}{2}b^2$.