
MATH 165: HONORS CALCULUS I
EXAM I SOLUTIONS

(1) Let a ∈ R be an arbitrary real number.
a) Define −a.

Definition. −a is the unique number x such that a + x = 0. It exists by Axiom 5. It is unique
because if x′ is another such number then a + x = 0 = a + x′ and adding x to both sides gives
(x + a) + x = (x + a) + x′, which simplifies to 0 + x = 0 + x′ and x = x′ using Axioms 1, 2 and 4.

b) Prove that 0 · a = 0.
Proof. By Axiom 4, 0 + 0 = 0, multiplying by a gives (0 + 0)a = 0 · a, and by Axiom 3,
0 · a+0 · a = 0 · a. Now adding −(0 · a) to both sides gives −(0 · a)+ (0 · a+0 · a) = −(0 · a)+ 0 · a
which simplifies to 0 + 0 · a = 0 and 0 · a = 0 using Axioms 1, 2 and 4, and the definition of
−(0 · a).

c) Prove that (−1) · a = −a.

Proof. By definition of −1, 1 + (−1) = 0. Multiplying by a gives (1 + (−1))a = 0 · a, and by
Axiom 3, 1 ·a+(−1) ·a = 0 ·a. Using part b) and Axiom 4, this simplifies to a+(−1) ·a = 0. Since
−a is the unique number x satisfying a + x = 0 (see part a)), we conclude that (−1) · a = −a.

(2) a) Define the positive integers, N.

Definition. n ∈ N if and only if n is in every inductive set. A set S is inductive if 1 ∈ S, and
x + 1 ∈ S whenever x ∈ S.

b) Prove that there is no upper bound for N.

Proof. If N has an upper bound, then it has a least upper bound b = sup(N) by Axiom 10. Since
b − 1 cannot be an upper bound of N, there must be some n ∈ N such that b − 1 < n. But then
n + 1 ∈ N and b < n + 1, contradicting the fact that b is an upper bound of N. Therefore, there
can be no upper bound of N.

c) Let a > 0 and let T =
{

a
(
1 +

1
n

)
|n ∈ N

}
. Prove that a = inf(T ).

Proof. Since a/n > 0 for all n ∈ N, a < a + a/n. Thus, a is a lower bound of T . Suppose b is
another lower bound of T and b > a. Then a < b ≤ a + a/n for all n ∈ N. This implies that
0 < b − a ≤ a/n and n ≤ a/(b − a) for all n ∈ N. But then a/(b − a) is an upper bound for N
contradicting part b). Therefore, b ≤ a and a must be the greatest lower bound of T , a = inf(T ).

(3) a) Define
n∑

k=1

ak.

Definition.
1∑

k=1

ak is defined to be a1 and if
n∑

k=1

ak has been defined for a positive integer n, then

n+1∑
k=1

ak is defined to be
( n∑

k=1

ak

)
+ an+1.

b) Use induction to prove that for any positive integer n,
n∑

k=1

(k − 1)3 <
n4

4
.

Proof.

i) The inequality holds for n = 1 since
1∑

k=1

(k − 1)3 = (1− 1)3 = 0 <
14

4
.
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ii) Assume the inequality holds for n. Then
n+1∑
k=1

(k − 1)3 =
( n∑

k=1

(k − 1)3
)

+ n3 <
n4

4
+ n3 =

1
4
(n4 + 4n3)

<
1
4
(n4 + 4n3 + 6n2 + 4n + 1) =

(n + 1)4

4

c) Use telescoping sums to calculate
n∑

k=1

2k − 1
2kk!

Solution.
n∑

k=1

2k − 1
2kk!

=
n∑

k=1

2k

2kk!
− 1

2kk!
=

n∑
k=1

1
2k−1(k − 1)!

− 1
2kk!

=
1

200!
− 1

2nn!
= 1− 1

2nn!

(4) Find the coefficient of x81 in (x3 − 7)30 (give its prime factorization).

Solution. By the binomial theorem, the terms in the expansion of (x3 − 7)30 have the form( 30
k

)
(x3)k(−7)30−k. The term containing x81 corresponds to k = 27. Therefore, the coefficient of

x81 is ( 30
27

)
(−7)3 =

30 · 29 · 28
3 · 2 · 1

(−7)3 = −4 · 5 · 74 · 29

(5) Give precise definitions of the following.
a) A step function s on [a, b].

Definition. A function s(x) is a step function on [a, b] if there is a partition P = {x0, x1, . . . , xn}
of [a, b] such that s(x) is constant on the open subintervals of P : s(x) = sk for x ∈ (xk−1, xk),
k = 1, . . . , n.

b)
∫ b

a

s(x) dx where s is a step function on [a, b].

Definition. Using the notation of part a),
∫ b

a

s(x) dx is defined to be
n∑

k=1

sk(xk − xk−1).

c) The lower integral, I(f), and upper integral, I(f), of a bounded function f on [a, b].

Definition. Let S be the set of numbers
∫ b

a

s(x) dx where s runs through all the step functions

on [a, b] below f and let T be the set of numbers
∫ b

a

t(x) dx where t runs through all the step

functions on [a, b] above f . Since f is bounded on [a, b], the sets S and T are non-empty and
bounded from above and below, respectively. By Axiom 10, the supremum of S and the infimum
of T exist. The lower integral of f is defined to be I(f) = sup(S), and the upper integral of f is
defined to be I(f) = inf(T ).

d)
∫ b

a

f(x) dx where f is a bounded function on [a, b].

Definition. If there is exactly one number I satisfying
∫ b

a

s(x) dx ≤ I ≤
∫ b

a

t(x) dx for all step

functions s, t such that s(x) ≤ f(x) ≤ t(x) for x ∈ [a, b], then
∫ b

a

f(x) dx is defined to be this

number I. Alternately, if I(f) = I(f) = I, where I(f) and I(f) are defined as in part c), then∫ b

a

f(x) dx = I.

(6) Give precise statements of the following theorems for integrals.
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a) Linearity with Respect to the Integrand.

Theorem. If f and g are integrable on [a, b], then for any constants c1, c2 ∈ R, the function
c1f + c2g is also integrable on [a, b] and∫ b

a

c1f(x) + c2g(x) dx = c1

∫ b

a

f(x) dx + c2

∫ b

a

g(x) dx

b) Additivity with Respect to the Interval of Integration.

Theorem. Let a ≤ c ≤ b. Then f is integrable on [a, b] if and only if f is integrable on [a, c] and
on [c, b]. Moreover, ∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx

c) Comparison Theorem

Theorem. If f and g are integrable on [a, b] and f(x) ≤ g(x) for all x ∈ [a, b], then∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx

(7) Evaluate
∫ 2

−2

3− |x2 − 1| dx.

Solution. x2 − 1 ≥ 0 if and only if x ≤ −1 or x ≥ 1. Using additivity with respect to the interval,

the definition of absolute value, and the formula
∫ b

a

xn dx = (bn+1 − an+1)/(n + 1), we get∫ 2

−2

3− |x2 − 1| dx =
∫ −1

−2

3− (x2 − 1) dx +
∫ 1

−1

3 + (x2 − 1) dx +
∫ 2

1

3− (x2 − 1) dx

= (4− 1
3
7) + (4 +

1
3
2) + (4− 1

3
7) = 8

(8) Let b > 0. Show that
∫ b

0

x dx =
1
2
b2 by considering step functions constant on subintervals of equal

length.

Solution. The partition points for n subintervals of equal length are given by xk = k
b

n
, k =

0, . . . , n. Define step functions by

s(x) = sk = (k − 1)
b

n
, xk−1 ≤ x < xk

t(x) = tk = k
b

n
, xk−1 < x ≤ xk

for k = 1, . . . , n (also define s(b) = b and t(0) = 0). Since f(x) = x is increasing on [0, b], s(x) ≤
f(x) ≤ t(x) for all x ∈ [0, b].

The integrals of these step functions can be easily calculated since (xk − xk−1) =
b

n
:∫ b

0

s(x) dx =
n∑

k=1

sk(xk − xk−1) =
n∑

k=1

(k − 1)
b

n

( b

n

)
=

b2

n2

n∑
k=1

(k − 1) =
b2

n2

n(n− 1)
2

=
1
2
b2

(
1− 1

n

)
Similarly,∫ b

0

t(x) dx =
n∑

k=1

tk(xk − xk−1) =
n∑

k=1

k
b

n

( b

n

)
=

b2

n2

n∑
k=1

k =
b2

n2

n(n + 1)
2

=
1
2
b2

(
1 +

1
n

)
There is only one number I that satisfies

1
2
b2

(
1− 1

n

)
≤ I ≤ 1

2
b2

(
1 +

1
n

)
for all n ∈ N, namely, I =

1
2
b2 (see for example, Problem 2c). We conclude that

∫ 1

0

x dx =
1
2
b2.


