MATH 165: HONORS CALCULUS I EXAM I SOLUTIONS

- (1) Let $a \in \mathbb{R}$ be an arbitrary real number.
	- a) Define $-a$. Definition. $-a$ is the unique number x such that $a + x = 0$. It exists by Axiom 5. It is unique because if x' is another such number then $a + x = 0 = a + x'$ and adding x to both sides gives $(x+a)+x = (x+a)+x'$, which simplifies to $0+x=0+x'$ and $x=x'$ using Axioms 1, 2 and 4. b) Prove that $0 \cdot a = 0$.
	- *Proof.* By Axiom 4, $0 + 0 = 0$, multiplying by a gives $(0 + 0)a = 0 \cdot a$, and by Axiom 3, $0 \cdot a + 0 \cdot a = 0 \cdot a$. Now adding $-(0 \cdot a)$ to both sides gives $-(0 \cdot a) + (0 \cdot a + 0 \cdot a) = -(0 \cdot a) + 0 \cdot a$ which simplifies to $0 + 0 \cdot a = 0$ and $0 \cdot a = 0$ using Axioms 1, 2 and 4, and the definition of $-(0 \cdot a).$
	- c) Prove that $(-1) \cdot a = -a$.

Proof. By definition of -1 , $1 + (-1) = 0$. Multiplying by a gives $(1 + (-1))a = 0 \cdot a$, and by Axiom 3, $1 \cdot a + (-1) \cdot a = 0 \cdot a$. Using part b) and Axiom 4, this simplifies to $a + (-1) \cdot a = 0$. Since $-a$ is the unique number x satisfying $a + x = 0$ (see part a)), we conclude that $(-1) \cdot a = -a$.

(2) a) Define the positive integers, N.

Definition. $n \in \mathbb{N}$ if and only if n is in every inductive set. A set S is inductive if $1 \in S$, and $x + 1 \in S$ whenever $x \in S$.

b) Prove that there is no upper bound for N.

Proof. If N has an upper bound, then it has a least upper bound $b = \sup(N)$ by Axiom 10. Since $b-1$ cannot be an upper bound of N, there must be some $n \in \mathbb{N}$ such that $b-1 < n$. But then $n+1 \in \mathbb{N}$ and $b < n+1$, contradicting the fact that b is an upper bound of N. Therefore, there can be no upper bound of N.

c) Let $a > 0$ and let $T = \left\{a\left(1 + \frac{1}{a}\right)\right\}$ n $\Big\}$ | $n \in \mathbb{N}$. Prove that $a = \inf(T)$.

Proof. Since $a/n > 0$ for all $n \in \mathbb{N}$, $a < a + a/n$. Thus, a is a lower bound of T. Suppose b is another lower bound of T and $b > a$. Then $a < b \le a + a/n$ for all $n \in \mathbb{N}$. This implies that $0 < b - a \le a/n$ and $n \le a/(b - a)$ for all $n \in \mathbb{N}$. But then $a/(b - a)$ is an upper bound for N contradicting part b). Therefore, $b \le a$ and a must be the greatest lower bound of T, $a = \inf(T)$.

(3) a) Define
$$
\sum_{k=1}^{n} a_k.
$$

Definition. $\sum_{n=1}^{\infty}$ $k=1$ a_k is defined to be a_1 and if $\sum_{n=1}^n$ $k=1$ a_k has been defined for a positive integer n , then \sum^{n+1} a_k is defined to be $\left(\sum_{n=1}^n\right)$ $a_k + a_{n+1}.$

b) Use induction to prove that for any positive integer $n, \sum_{k=1}^{n} (k-1)^3 < \frac{n^4}{4}$ $k=1$ $\frac{6}{4}$.

 $k=1$

Proof.

 $k=1$

i) The inequality holds for
$$
n = 1
$$
 since $\sum_{k=1}^{1} (k-1)^3 = (1-1)^3 = 0 < \frac{1^4}{4}$.

Date: September 30, 1999.

ii) Assume the inequality holds for n . Then

$$
\sum_{k=1}^{n+1} (k-1)^3 = \left(\sum_{k=1}^n (k-1)^3\right) + n^3 < \frac{n^4}{4} + n^3 = \frac{1}{4} (n^4 + 4n^3)
$$
\n
$$
\leq \frac{1}{4} (n^4 + 4n^3 + 6n^2 + 4n + 1) = \frac{(n+1)^4}{4}
$$

c) Use telescoping sums to calculate $\sum_{n=1}^n$ $k=1$ $2k-1$ $2^k k!$

Solution.

$$
\sum_{k=1}^{n} \frac{2k-1}{2^k k!} = \sum_{k=1}^{n} \frac{2k}{2^k k!} - \frac{1}{2^k k!} = \sum_{k=1}^{n} \frac{1}{2^{k-1}(k-1)!} - \frac{1}{2^k k!}
$$

$$
= \frac{1}{2^0 0!} - \frac{1}{2^n n!} = 1 - \frac{1}{2^n n!}
$$

(4) Find the coefficient of x^{81} in $(x^3 - 7)^{30}$ (give its prime factorization).

Solution. By the binomial theorem, the terms in the expansion of $(x^3 - 7)^{30}$ have the form (30) k $(x^{3})^{k}(-7)^{30-k}$. The term containing x^{81} corresponds to $k = 27$. Therefore, the coefficient of x^{81} is

$$
\binom{30}{27}(-7)^3 = \frac{30 \cdot 29 \cdot 28}{3 \cdot 2 \cdot 1}(-7)^3 = -4 \cdot 5 \cdot 7^4 \cdot 29
$$

- (5) Give precise definitions of the following.
	- a) A step function s on $[a, b]$.

Definition. A function $s(x)$ is a step function on [a, b] if there is a partition $P = \{x_0, x_1, \ldots, x_n\}$ of [a, b] such that $s(x)$ is constant on the open subintervals of P: $s(x) = s_k$ for $x \in (x_{k-1}, x_k)$ $k=1,\ldots,n.$

b) \int^b a $s(x) dx$ where s is a step function on [a, b].

Definition. Using the notation of part a), \int^b a $s(x) dx$ is defined to be $\sum_{n=1}^n$ $k=1$ $s_k(x_k - x_{k-1}).$

c) The lower integral, $\underline{I}(f)$, and upper integral, $\overline{I}(f)$, of a bounded function f on [a, b].

Definition. Let S be the set of numbers \int^b a $s(x) dx$ where s runs through all the step functions on [a, b] below f and let T be the set of numbers \int^b a $t(x) dx$ where t runs through all the step functions on [a, b] above f. Since f is bounded on [a, b], the sets S and T are non-empty and bounded from above and below, respectively. By Axiom 10, the supremum of S and the infimum of T exist. The lower integral of f is defined to be $\underline{I}(f) = \sup(S)$, and the upper integral of f is defined to be $\underline{I}(f) = \inf(T)$.

- d) \int^b a $f(x) dx$ where f is a bounded function on [a, b]. Definition. If there is exactly one number I satisfying \int^b a $s(x) dx \leq I \leq \int_0^b$ a $t(x) dx$ for all step functions s, t such that $s(x) \leq f(x) \leq t(x)$ for $x \in [a, b]$, then $\int_{a}^{b} f(x) dx$ is defined to be this number I. Alternately, if $\underline{I}(f) = \overline{I}(f) = I$, where $\underline{I}(f)$ and $\overline{I}(f)$ are defined as in part c), then \int^b a $f(x) dx = I.$
- (6) Give precise statements of the following theorems for integrals.

a) LINEARITY WITH RESPECT TO THE INTEGRAND.

Theorem. If f and g are integrable on [a, b], then for any constants $c_1, c_2 \in \mathbb{R}$, the function $c_1 f + c_2 g$ is also integrable on [a, b] and

$$
\int_{a}^{b} c_1 f(x) + c_2 g(x) dx = c_1 \int_{a}^{b} f(x) dx + c_2 \int_{a}^{b} g(x) dx
$$

b) ADDITIVITY WITH RESPECT TO THE INTERVAL OF INTEGRATION.

Theorem. Let $a \leq c \leq b$. Then f is integrable on [a, b] if and only if f is integrable on [a, c] and on $[c, b]$. Moreover,

$$
\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx
$$

c) Comparison Theorem

Theorem. If f and g are integrable on [a, b] and $f(x) \le g(x)$ for all $x \in [a, b]$, then

$$
\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx
$$

(7) Evaluate \int_0^2 −2 $3 - |x^2 - 1| dx$.

Solution. $x^2 - 1 \ge 0$ if and only if $x \le -1$ or $x \ge 1$. Using additivity with respect to the interval, the definition of absolute value, and the formula \int^b $x^n dx = (b^{n+1} - a^{n+1})/(n+1)$, we get

$$
\int_{-2}^{2} 3 - |x^2 - 1| dx = \int_{-2}^{-1} 3 - (x^2 - 1) dx + \int_{-1}^{1} 3 + (x^2 - 1) dx + \int_{1}^{2} 3 - (x^2 - 1) dx
$$

$$
= (4 - \frac{1}{3}7) + (4 + \frac{1}{3}2) + (4 - \frac{1}{3}7) = 8
$$

(8) Let $b > 0$. Show that \int^b 0 $x dx = \frac{1}{2}$ $\frac{1}{2}b^2$ by considering step functions constant on subintervals of equal length.

Solution. The partition points for *n* subintervals of equal length are given by $x_k = k \frac{b}{n}$ $\frac{0}{n}$, $k =$ $0, \ldots, n$. Define step functions by

$$
s(x) = s_k = (k-1)\frac{b}{n}, \qquad x_{k-1} \le x < x_k
$$

$$
t(x) = t_k = k\frac{b}{n}, \qquad x_{k-1} < x \le x_k
$$

for $k = 1, \ldots, n$ (also define $s(b) = b$ and $t(0) = 0$). Since $f(x) = x$ is increasing on $[0, b]$, $s(x) \le$ $f(x) \leq t(x)$ for all $x \in [0, b]$.

The integrals of these step functions can be easily calculated since $(x_k - x_{k-1}) = \frac{b}{n}$.

$$
\int_0^b s(x) dx = \sum_{k=1}^n s_k (x_k - x_{k-1}) = \sum_{k=1}^n (k-1) \frac{b}{n} \left(\frac{b}{n}\right) = \frac{b^2}{n^2} \sum_{k=1}^n (k-1) = \frac{b^2}{n^2} \frac{n(n-1)}{2} = \frac{1}{2} b^2 \left(1 - \frac{1}{n}\right)
$$

Similarly,

$$
\int_0^b t(x) dx = \sum_{k=1}^n t_k (x_k - x_{k-1}) = \sum_{k=1}^n k \frac{b}{n} \left(\frac{b}{n}\right) = \frac{b^2}{n^2} \sum_{k=1}^n k = \frac{b^2}{n^2} \frac{n(n+1)}{2} = \frac{1}{2}b^2 \left(1 + \frac{1}{n}\right)
$$

There is only one number I that satisfies

$$
\frac{1}{2}b^2\left(1-\frac{1}{n}\right) \le I \le \frac{1}{2}b^2\left(1+\frac{1}{n}\right)
$$

for all $n \in \mathbb{N}$, namely, $I = \frac{1}{2}$ $\frac{1}{2}b^2$ (see for example, Problem 2c). We conclude that \int_0^1 0 $x dx = \frac{1}{2}$ $\frac{1}{2}b^2$.