MATH 165: HONORS CALCULUS I EXAM II SOLUTIONS

(1) a) The area between the graphs of f(x) and g(x) on [a, b] is defined to be $\int_{a}^{b} |f(x) - g(x)| dx$.

b) Consider a unit circle centered at the origin O = (0,0) and let A be the point (1,0). Given a number x between 0 and 2π , let P_x be the point on the unit circle such that AOP_x forms a circular sector with area x/2. Then $\cos(x)$ and $\sin(x)$ are the coordinates of $P_x =$ $(\cos(x), \sin(x))$. The domain of $\sin(x)$ and $\cos(x)$ is extended to all real numbers by periodicity: $\sin(x+2\pi) = \sin(x) \text{ and } \cos(x+2\pi) = \cos(x).$

c) $\lim_{x\to p} f(x) = A$ means that for any $\epsilon > 0$ there is a $\delta > 0$ such that if $0 < |x-p| < \delta$ then $|f(x) - A| < \epsilon.$

d) A function f(x) is one-to-one if for any two distinct numbers $x_1 \neq x_2$ in its domain, the function values are distinct, $f(x_1) \neq f(x_2)$.

- e) The average value of an integrable function on [a, b] is $\overline{f} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$.
- (2) a) BASIC LIMIT THEOREMS. Let f and g be function such that $\lim_{x \to p} f(x) = A$ and $\lim_{x \to p} g(x) = B$. Then

 - i)
 $$\begin{split} &\lim_{x\to p} [f(x)+g(x)] = A+B,\\ &\text{ii)} \quad \lim_{x\to p} [f(x)-g(x)] = A-B,\\ &\text{iii)} \quad \lim_{x\to p} [f(x)\cdot g(x)] = A\cdot B, \end{split}$$

 - iv) $\lim_{x \to p} [f(x)/g(x)] = A/B$, if $B \neq 0$.

b) THE SQUEEZING PRINCIPLE. If $g(x) \le f(x) \le h(x)$ for x in a neighborhood of p $(x \ne p)$, and if $\lim_{x \to p} g(x) = A = \lim_{x \to p} h(x)$, then $\lim_{x \to p} f(x) = A$.

c) BOLZANO'S THEOREM. Let f be continuous on [a, b] and assume f(a) and f(b) have opposite signs. Then there is a $c \in [a, b]$ such that f(c) = 0.

d) INTERMEDIATE VALUE THEOREM. Let f be continuous on [a, b] and let $x_1 < x_2$ be points in [a,b] such that $f(x_1) \neq f(x_2)$. Then for any value k between $f(x_1)$ and $f(x_2)$ there is at least one point $c \in [x_1, x_2]$ such that f(p) = c.

e) EXTREME VALUE THEOREM. Let f be continuous on [a, b]. Then f has a maximum and a minimum in [a, b], that is, there are points $c, d \in [a, b]$ such that $f(c) \leq f(x) \leq f(d)$ for all $x \in [a.b].$

(3) a)
$$\lim_{x \to 1} \frac{\sin(x^2 - 1)}{x - 1} = \lim_{x \to 1} (x + 1) \frac{\sin(x^2 - 1)}{x^2 - 1} = \lim_{x \to 1} (x + 1) \lim_{x \to 1} \frac{\sin(x^2 - 1)}{x^2 - 1} = 2 \cdot 1 = 2$$

b)
$$\lim_{x \to 0} \frac{\sqrt{x^4 + 1} - 1}{x^4} = \lim_{x \to 0} \frac{(x^4 + 1) - 1}{x^4(\sqrt{x^4 + 1} + 1)} = \lim_{x \to 0} \frac{1}{\sqrt{x^4 + 1} + 1} = \frac{1}{2}$$

c)
$$\lim_{x \to 2} \sqrt{x^3 - \frac{1}{x^3}} = \sqrt{2^3 - \frac{1}{2^3}} = \sqrt{\frac{63}{8}}$$

Date: November 11, 1999.

d) Since $\left[\frac{1}{x}\right] \leq \frac{1}{x}$, we get $0 \leq x^2 \left(1 + \left[\frac{1}{x}\right]\right) \leq x^2 \left(1 + \frac{1}{x}\right) = x^2 + x$ for x > 0. Since $\lim_{x \to 0^+} x^2 + x = 0$, the SQUEEZING PRINCIPLE implies that $\lim_{x \to 0^+} x^2 \left(1 + \left[\frac{1}{x}\right]\right) = 0$

- (4) Assume $\lim_{x \to p} f(x) = A$ and $\lim_{x \to p} g(x) = B$. Using the definition of limit, prove that $\lim_{x \to p} (f(x) g(x)) = A B$. *Proof.* Let $\epsilon > 0$. By assumption, there exists $\delta_1 > 0$ and $\delta_2 > 0$ such that if $0 < |x - p| < \delta_1$ then $|f(x) - A| < \epsilon/2$, and if $0 < |x - p| < \delta_2$ then $|g(x) - B| < \epsilon/2$. Let $\delta = \min\{\delta_1, \delta_2\}$. If $0 < |x - p| < \delta$ then $|(f(x) - g(x)) - (A - B)| \le |f(x) - A| + |g(x) - B| < \epsilon/2 + \epsilon/2 = \epsilon$. Therefore, $\lim_{x \to p} (f(x) - g(x)) = A - B$.
- (5) Let f be continuous at p and let g be continuous at q = f(p). Prove that g ∘ f is continuous at p. Proof. Let ε > 0. By assumption, there is a δ₁ > 0 such that if 0 < |y - q| < δ₁ then |g(y) - g(q)| < ε. Also by assumption, there is a δ₂ > 0 such that if 0 < |x - p| < δ₂ then |f(x) - f(p)| < δ₁. By what we've just written, this implies that |g(f(x)) - g(f(p))| < ε. Therefore, g(f(x)) is continuous at x = p.</p>
- (6) Let f be integrable and positive on [a, b]. Show that the function $F(x) = \int_{a}^{x} f(t) dt$ is increasing on [a, b]. *Proof.* Let $a \le x_1 < x_2 \le b$. Then $F(x_2) - F(x_1) = \int_{a}^{x_2} f(t) dt - \int_{a}^{x_1} f(t) dt = \int_{x_1}^{x_2} f(t) dt$. Since f(t) > 0 for $t \in [a, b]$, $\int_{x_1}^{x_2} f(t) dt \ge \int_{x_1}^{x_2} 0 dt = 0$ by the COMPARISON THEOREM. Therefore, $F(x_2) - F(x_1) \ge 0$ and hence F(x) is increasing on [a, b].
- (7) Suppose the inverse of a function is $f^{-1}(x) = \sqrt{\frac{1}{\sqrt{x}} 1}$ for $0 < x \le 1$. Determine the original function, f(x), including its domain.

Solution. By definition, $y = f^{-1}(x)$ if and only if f(y) = x. To find f(x) we solve the equation $y = \sqrt{\frac{1}{\sqrt{x}} - 1}$ for x to get $x = \frac{1}{(y^2 + 1)^2} = f(y)$, or, $f(x) = \frac{1}{(x^2 + 1)^2}$. The range of f^{-1} on the interval (0, 1] is $[0, \infty)$ and this becomes the domain of f.