
MATH 165: HONORS CALCULUS I
FINAL EXAM SOLUTIONS

(1) Give complete definitions. . .
See the text.

(2) State the following theorems. . .
See the text.

(3) Calculate the following.

(a)
∫ 2

0

[x2] dx where [u] is the greatest integer ≤ u.

Solution.∫ 2

0

[x2] dx =
∫ 1

0

0 dx +
∫ √

2

1

1 dx +
∫ √

3

√
2

2 dx +
∫ 2

√
3

3 dx

= (
√

2− 1) + 2(
√

3−
√

2) + 3(2−
√

3) = 5−
√

3−
√

2

(b) Find the area between the graphs of sin(x) and cos(x) on [0, 2π].
Solution.

A =
∫ 2π

0

| sin(x)− cos(x)| dx

=
∫ π/4

0

cos(x)− sin(x) dx +
∫ 5π/4

π/4

sin(x)− cos(x) dx +
∫ 2π

5π/4

cos(x)− sin(x) dx

= (sin(x) + cos(x))
∣∣∣π/4

0
+ (− cos(x)− sin(x))

∣∣∣5π/4

π/4
+ (sin(x) + cos(x))

∣∣∣2π

5π/4
= 4

√
2

(c) The average value of f(x) = x(x− 1) on the interval [0, 2].

Solution. f =
1
2

∫ 2

0

x2 − x dx =
1
2
(
1
3
x3 − 1

2
x2)

∣∣∣∣∣
2

0

=
1
2
(
1
3
8− 1

2
4) =

1
3

(4) Compute the following limits or prove they do not exist.

(a) lim
x→1

x

x− 1

√
1− 2

x
+

1
x2

Solution. Since√
1− 2

x
+

1
x2

=

√(
1− 1

x

)2

=

√(x− 1
x

)2

=
∣∣∣x− 1

x

∣∣∣
we find

x

x− 1

√
1− 2

x
+

1
x2

=
x

x− 1

∣∣∣x− 1
x

∣∣∣ =
{

−1 0 < x < 1
1 x > 1

This shows that the right-hand limit is 1, and the left-hand limit is −1. Therefore, the
original limit does not exist.

(b) lim
x→0

sin(x) cos(1/x)

Solution. Since 0 ≤ | cos(1/x)| ≤ 1, we get 0 ≤ | sin(x) cos(1/x)| ≤ | sin(x)| and since
lim
x→0

| sin(x)| = 0, the Squeezing Principle implies that lim
x→0

sin(x) cos(1/x) = 0
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(5) (a) Find the maximum and the minimum of f(x) =
x2 + 1
x3 + 2

on [0, 2].

Solution.

f ′(x) =
2x(x3 + 2)− 3x2(x2 + 1)

(x3 + 2)2
= −x(x− 1)(x2 + x + 4)

(x3 + 2)2

Thus, f ′(x) = 0 when x = 0 or x = 1. Evaluating f(x) at these critical points and
the endpoints of the interval reveals a minimum value of f(0) = f(2) = 1/2 and a
maximum of f(1) = 2/3.

(b) Find the line tangent to the ellipse x2 + 4y2 = 4 at the point (
√

3,−1/2).
Solution. Taking the derivative implicitly, we find 2x + 8yy′ = 0 or y′ = −x/(4y).
Evaluating the derivative at (x, y) = (

√
3,−1/2) gives y′ =

√
3/2. The equation of the

tangent line is thus y + 1/2 = (
√

3/2)(x−
√

3) or y = (
√

3/2)x− 2.

(6) Use the definition of the derivative to prove that
d

dx
sin(x) = cos(x).

Solution. We first observe that

lim
h→0

cos(h)− 1
h

= lim
h→0

cos2(h)− 1
h(cos(x) + 1)

= lim
h→0

−h
sin2(h)

h2

1
(cos(x) + 1)

= −0 · 12 · 1
2

= 0

Using the addition formula for sin(x + h) we find
d

dx
sin(x) = lim

h→0

sin(x + h)− sin(x)
h

= lim
h→0

sin(x) cos(h) + cos(x) sin(h)− sin(x)
h

= lim
h→0

sin(x)
cos(h)− 1

h
+ cos(x)

sin(h)
h

= sin(x) · 0 + cos(x) · 1 = cos(x)

(7) Use the definition of the limit to prove that lim
x→3

x2 = 9.

Solution. Given any ε > 0 let δ = min{1, ε/7}. If 0 < |x − 3| < δ, then |x − 3| < 1 and
|x − 3| < ε/7. In particular, 2 < x < 4, so |x + 3| < 7. Thus |x2 − 9| = |x + 3||x − 3| <
7|x− 3| < 7(ε/7) = ε.

(8) Use the Mean Value Theorem to prove that if f ′(x) > 0 on an interval (a, b), then f(x)
is strictly increasing on that interval.

Solution. Let x1, and x2 be any two points in the interval (a, b) with x1 < x2. We must
show that f(x1) < f(x2). The Mean Value Theorem implies that there is a c ∈ (x1, x2)
such that f ′(c)(x2 − x1) = f(x2)− f(x1). Since the left hand side is positive, so is the right
hand side, and therefore f(x1) < f(x2).

(9) (a) Show that if f(x) is a polynomial of degree n, then f ′(x) is a polynomial of degree
n− 1.

Solution. A polynomial a degree n is a function of the form f(x) =
n∑

k=0

ckxk with

cn 6= 0. The power rule and linearity of derivatives implies that f ′(x) =
n∑

k=1

kckxk−1.

The highest order term in this sum is ncnxn−1 which means f ′(x) has degree n− 1.
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(b) Use Rolle’s Theorem, induction, and part a) to prove that if f(x) is a polynomial of
degree n then f(x) has at most n distinct roots.
Solution. Let us prove the assertion using induction on the degree n of f(x). The
assertion is true for n = 1: In this case, f(x) = c1x+c0 has exactly one root, x = −c0/c1.
We now assume the assertion is true for polynomials of degree n− 1 ≥ 1, and prove it
is true for polynomials of degree n. By part a), if f(x) has degree n, then f ′(x) has
degree n− 1. By the induction hypothesis, we know that f ′(x) can have at most n− 1
distinct roots. Rolle’s theorem implies that between any two roots of f(x) there is a
root of f ′(x). So, if f(x) had more than n distinct roots, say r1, . . . , rm with m > n,
then f ′(x) would have more than n − 1 roots, i.e., at least one root in each interval
(ri, ri+1), i = 1, . . . ,m − 1. This contradiction implies that f(x) can have at most n
distinct roots.

(10) Let f(x) =
2
5
x5 − 3x3 + 7x.

(a) Determine the intervals on which f is increasing and decreasing.
Solution. The roots of f ′(x) = 2x4 − 9x2 + 7 are x = ±1 and x = ±

√
7/2. Moreover,

f ′(x) > 0 and f(x) is increasing for x < −
√

7/2, −1 < x < 1, and x >
√

7/2; f ′(x) < 0
and f(x) is decreasing for −

√
7/2 < x < −1, and 1 < x <

√
7/2.

(b) Determine the relative maxima and minima of f .
Solution. The First Derivative Test implies that f(x) has relative maxima at
x = −

√
7/2 and x = 1 (f(−

√
7/2) = −(7/5)

√
7/2, f(1) = 22/5), and relative minima

at x = −1, and x =
√

7/2 (f(−1) = −22/5 f(
√

7/2) = (7/5)
√

7/2).
(c) Determine the intervals on which f is convex and concave.

Solution. The roots of f ′′(x) = 8x3−18x are x = ±3/2 and x = 0. f ′′(x) > 0 and f(x)
is convex for −3/2 < x < 0 and x > 3/2. f ′′(x) < 0 and f(x) is concave for x < −3/2
and 0 < x < 3/2.

(d) Sketch the graph of f .


