MATH 165: HONORS CALCULUS I FINAL EXAM SOLUTIONS

- (1) Give complete definitions. . . See the text.
- (2) State the following theorems. . . See the text.
- (3) Calculate the following.

(a)
$$
\int_0^2 [x^2] dx
$$
 where [u] is the greatest integer $\leq u$.
\nSolution.
\n
$$
\int_0^2 [x^2] dx = \int_0^1 0 dx + \int_1^{\sqrt{2}} 1 dx + \int_{\sqrt{2}}^{\sqrt{3}} 2 dx + \int_{\sqrt{3}}^2 3 dx
$$
\n
$$
= (\sqrt{2} - 1) + 2(\sqrt{3} - \sqrt{2}) + 3(2 - \sqrt{3}) = 5 - \sqrt{3} - \sqrt{2}
$$

(b) Find the area between the graphs of $sin(x)$ and $cos(x)$ on $[0, 2\pi]$. Solution. \overline{Q}

$$
A = \int_0^{2\pi} |\sin(x) - \cos(x)| dx
$$

=
$$
\int_0^{\pi/4} \cos(x) - \sin(x) dx + \int_{\pi/4}^{5\pi/4} \sin(x) - \cos(x) dx + \int_{5\pi/4}^{2\pi} \cos(x) - \sin(x) dx
$$

=
$$
(\sin(x) + \cos(x))\Big|_0^{\pi/4} + (-\cos(x) - \sin(x))\Big|_{\pi/4}^{5\pi/4} + (\sin(x) + \cos(x))\Big|_{5\pi/4}^{2\pi} = 4\sqrt{2}
$$

(c) The average value of $f(x) = x(x - 1)$ on the interval [0, 2].

Solution.
$$
\overline{f} = \frac{1}{2} \int_0^2 x^2 - x \, dx = \frac{1}{2} (\frac{1}{3}x^3 - \frac{1}{2}x^2) \Big|_0^2 = \frac{1}{2} (\frac{1}{3}8 - \frac{1}{2}4) = \frac{1}{3}
$$

(4) Compute the following limits or prove they do not exist.

(a)
$$
\lim_{x \to 1} \frac{x}{x-1} \sqrt{1 - \frac{2}{x} + \frac{1}{x^2}}
$$

\nSolution. Since
\nwe find
\n
$$
\sqrt{1 - \frac{2}{x} + \frac{1}{x^2}} = \sqrt{\left(1 - \frac{1}{x}\right)^2} = \sqrt{\left(\frac{x-1}{x}\right)^2} = \left|\frac{x-1}{x}\right|
$$
\nwe find\n
$$
\frac{x}{x-1} \sqrt{1 - \frac{2}{x} + \frac{1}{x^2}} = \frac{x}{x-1} \left|\frac{x-1}{x}\right| = \begin{cases} -1 & 0 < x < 1 \\ 1 & x > 1 \end{cases}
$$

This shows that the right-hand limit is 1, and the left-hand limit is -1 . Therefore, the original limit does not exist.

(b) $\lim_{x\to 0} \sin(x) \cos(1/x)$

Solution. Since $0 \leq |\cos(1/x)| \leq 1$, we get $0 \leq |\sin(x)\cos(1/x)| \leq |\sin(x)|$ and since $\lim_{x\to 0} |\sin(x)| = 0$, the SQUEEZING PRINCIPLE implies that $\lim_{x\to 0} \sin(x) \cos(1/x) = 0$

Date: December 15, 1999.

(5) (a) Find the maximum and the minimum of $f(x) = \frac{x^2 + 1}{x^2 + 1}$ $\frac{x+1}{x^3+2}$ on [0, 2]. Solution.

$$
f'(x) = \frac{2x(x^3+2) - 3x^2(x^2+1)}{(x^3+2)^2} = -\frac{x(x-1)(x^2+x+4)}{(x^3+2)^2}
$$

Thus, $f'(x) = 0$ when $x = 0$ or $x = 1$. Evaluating $f(x)$ at these critical points and the endpoints of the interval reveals a minimum value of $f(0) = f(2) = 1/2$ and a maximum of $f(1) = 2/3$.

(b) Find the line tangent to the ellipse $x^2 + 4y^2 = 4$ at the point $(\sqrt{3}, -1/2)$. Solution. Taking the derivative implicitly, we find $2x + 8yy' = 0$ or $y' = -x/(4y)$. Solution. Taking the derivative implicitly, we find $2x + 8yy = 0$ or $y = -x/(4y)$.
Evaluating the derivative at $(x, y) = (\sqrt{3}, -1/2)$ gives $y' = \sqrt{3}/2$. The equation of the tangent line is thus $y + 1/2 = (\sqrt{3}/2)(x - \sqrt{3})$ or $y = (\sqrt{3}/$ $(-1/2)$ gives $y = \sqrt{3}/2$.

(6) Use the definition of the derivative to prove that $\frac{d}{dx}\sin(x) = \cos(x)$. Solution. We first observe that

$$
\lim_{h \to 0} \frac{\cos(h) - 1}{h} = \lim_{h \to 0} \frac{\cos^2(h) - 1}{h(\cos(x) + 1)} = \lim_{h \to 0} -h \frac{\sin^2(h)}{h^2} \frac{1}{(\cos(x) + 1)}
$$

$$
= -0 \cdot 1^2 \cdot \frac{1}{2} = 0
$$

Using the addition formula for $sin(x+h)$ we find

$$
\frac{d}{dx}\sin(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}
$$

\n
$$
= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}
$$

\n
$$
= \lim_{h \to 0} \sin(x)\frac{\cos(h) - 1}{h} + \cos(x)\frac{\sin(h)}{h}
$$

\n
$$
= \sin(x) \cdot 0 + \cos(x) \cdot 1 = \cos(x)
$$

(7) Use the definition of the limit to prove that $\lim_{x\to 3} x^2 = 9$.

Solution. Given any $\epsilon > 0$ let $\delta = \min\{1, \epsilon/7\}$. If $0 < |x - 3| < \delta$, then $|x - 3| < 1$ and $|x-3| < \epsilon/7$. In particular, $2 < x < 4$, so $|x+3| < 7$. Thus $|x^2-9| = |x+3||x-3| <$ $7|x-3| < 7(\epsilon/7) = \epsilon.$

(8) Use the MEAN VALUE THEOREM to prove that if $f'(x) > 0$ on an interval (a, b) , then $f(x)$ is strictly increasing on that interval.

Solution. Let x_1 , and x_2 be any two points in the interval (a, b) with $x_1 < x_2$. We must show that $f(x_1) < f(x_2)$. The MEAN VALUE THEOREM implies that there is a $c \in (x_1, x_2)$ such that $f'(c)(x_2 - x_1) = f(x_2) - f(x_1)$. Since the left hand side is positive, so is the right hand side, and therefore $f(x_1) < f(x_2)$.

(9) (a) Show that if $f(x)$ is a polynomial of degree n, then $f'(x)$ is a polynomial of degree $n-1$. Solution. A polynomial a degree *n* is a function of the form $f(x) = \sum_{n=1}^n$ $k=0$ $c_k x^k$ with $c_n \neq 0$. The power rule and linearity of derivatives implies that $f'(x) = \sum_{n=0}^{\infty}$ $k=1$ $kc_kx^{k-1}.$ The highest order term in this sum is nc_nx^{n-1} which means $f'(x)$ has degree $n-1$.

(b) Use Rolle's Theorem, induction, and part a) to prove that if $f(x)$ is a polynomial of degree *n* then $f(x)$ has at most *n* distinct roots. Solution. Let us prove the assertion using induction on the degree n of $f(x)$. The assertion is true for $n = 1$: In this case, $f(x) = c_1x+c_0$ has exactly one root, $x = -c_0/c_1$. We now assume the assertion is true for polynomials of degree $n - 1 \geq 1$, and prove it is true for polynomials of degree n. By part a), if $f(x)$ has degree n, then $f'(x)$ has degree $n-1$. By the induction hypothesis, we know that $f'(x)$ can have at most $n-1$ distinct roots. Rolle's theorem implies that between any two roots of $f(x)$ there is a root of $f'(x)$. So, if $f(x)$ had more than n distinct roots, say r_1, \ldots, r_m with $m > n$, then $f'(x)$ would have more than $n-1$ roots, i.e., at least one root in each interval $(r_i, r_{i+1}), i = 1, \ldots, m-1$. This contradiction implies that $f(x)$ can have at most n distinct roots.

(10) Let $f(x) = \frac{2}{5}x^5 - 3x^3 + 7x$.

- (a) Determine the intervals on which f is increasing and decreasing. *Solution*. The roots of $f'(x) = 2x^4 - 9x^2 + 7$ are $x = \pm 1$ and $x = \pm \sqrt{7/2}$. Moreover, $f'(x) > 0$ and $f(x)$ is increasing for $x < -\sqrt{7/2}$, $-1 < x < 1$, and $x > \sqrt{7/2}$; $f'(x) < 0$ and $f(x)$ is decreasing for $-\sqrt{7/2} < x < -1$, and $1 < x < \sqrt{7/2}$.
- (b) Determine the relative maxima and minima of f . Solution. The FIRST DERIVATIVE TEST implies that $f(x)$ has relative maxima at $x = -\sqrt{7/2}$ and $x = 1$ $(f(-\sqrt{7/2}) = -(7/5)\sqrt{7/2}, f(1) = 22/5)$, and relative minima at $x = -1$, and $x = \sqrt{7/2}$ $(f(-1) = -22/5$ $f(\sqrt{7/2}) = (7/5)\sqrt{7/2}$.
- (c) Determine the intervals on which f is convex and concave. *Solution*. The roots of $f''(x) = 8x^3 - 18x$ are $x = \pm 3/2$ and $x = 0$. $f''(x) > 0$ and $f(x)$ is convex for $-3/2 < x < 0$ and $x > 3/2$. $f''(x) < 0$ and $f(x)$ is concave for $x < -3/2$ and $0 < x < 3/2$.
- (d) Sketch the graph of f .