Math 165: Honors Calculus I Quiz 1 September 2, 1999 Name:__

Axioms for the Real Numbers

A set \mathbb{R} , called the set of real numbers, is assumed to exist satisfying the ten axioms below.

The Field Axioms. Two operations on \mathbb{R} , addition and multiplication, are assumed to be defined, so that for each pair, $x, y \in \mathbb{R}$, there is a uniquely determined sum, $x + y \in \mathbb{R}$, and a uniquely determined product, $x \cdot y \in \mathbb{R}$, satisfying the following axioms.

- AXIOM 1. x + y = y + x, xy = yx
- AXIOM 2. x + (y + z) = (x + y) + z, x(yz) = (xy)z
- AXIOM 3. x(y+z) = xy + xz
- AXIOM 4. There exists distinct numbers 0 and 1 such that for every $x \in \mathbb{R}, x + 0 = x$ and $1 \cdot x = x$.
- AXIOM 5. For every $x \in \mathbb{R}$, there is a $y \in \mathbb{R}$ such that x + y = 0.
- AXIOM 6. For every $x \in \mathbb{R}$, $x \neq 0$, there is a $y \in \mathbb{R}$ such that xy = 1.

The Order axioms A subset $\mathbb{R}^+ \subset \mathbb{R}$, called the positive numbers, is assumed to exist satisfying the following axioms.

- AXIOM 7. If x and y are in \mathbb{R}^+ , so are x + y and xy.
- AXIOM 8. For every real $x \neq 0$, either $x \in \mathbb{R}^+$ or $-x \in \mathbb{R}^+$, but not both.
- Axiom 9. $0 \notin \mathbb{R}^+$.

The Completeness Axiom

- AXIOM 10. For every non-empty subset $S \subset \mathbb{R}$ that is bounded above there is a $B \in \mathbb{R}$ that is the supremum of $S, B = \sup S$.
- (1) Using only the axioms for the real numbers, prove the following statement: Given any real numbers a, b, there is a *unique* real number x such that a + x = b.

(2) Define an inductive set, S.

(3) Use the Principle of Mathematical Induction to prove $2^n > n$ for any positive integer n.