MATH 165: HONORS CALCULUS I QUIZ 6, SOLUTION TO PROBLEM 3

Let $f(t) = (-1)^{[t]}$ where [t] is the greatest integer less than or equal to t. Calculate $F(x) = \int_0^x f(t) dt$ for $0 \le x \le 4$ and plot its graph.

Solution. The graph of f(t) for $0 \le t \le 4$ is:

If
$$0 \le x < 1$$
, then in the integral $F(x) = \int_0^x f(t) dt$ the variable t lies in the interval $0 \le t \le x < 1$, so $[t] = 0$. Thus, $f(t) = 1$ and $F(x) = \int_0^x 1 dt = x$.
If $1 \le x < 2$, then $1 \le t \le x$ implies $[t] = 1$ and $f(t) = -1$, so $F(x) = \int_0^1 f(t) dt + \int_1^x f(t) dt = \int_0^1 1 dt + \int_1^x (-1) dt = 1 - x + 1 = 2 - x$
If $2 \le x < 3$, then $2 \le t \le x$ implies $[t] = 2$ and $f(t) = 1$, so $F(x) = \int_0^1 1 dt + \int_1^2 (-1) dt + \int_2^x 1 dt = 1 - 1 + x - 2 = x - 2$
If $3 \le x < 4$, then $3 \le t \le x$ implies $[t] = 3$ and $f(t) = -1$, so $F(x) = \int_0^1 1 dt + \int_1^2 (-1) dt + \int_2^3 1 dt + \int_3^x (-1) dt = 1 - 1 + 1 - x + 3 = 4 - x$
The graph of $F(x)$ is: