MATH 165: HONORS CALCULUS I ASSIGNMENT 1 SOLUTIONS

Page 19.

Problem 4 Zero has no reciprocal.

Proof. Suppose 0 has a reciprocal, 0^{-1} , so that $0 \cdot 0^{-1} = 1$. This immediately contradicts Theorem I.6, which implies that $0 \cdot 0^{-1} = 0$ ($0 \neq 1$ by Axiom 4). Therefore our assumption that 0 has a reciprocal must be false.

Problem 5 -(a+b) = -a - b

Proof. By definition (I.2), -a-b is the unique number such that b+(-a-b) = -a. Adding a to both sides gives a+b+(-a-b) = a+(-a) = 0. This equation shows that -a-b is the unique negative of a+b, and so -a-b = -(a+b).

Problem 8 If $a \neq 0$ and $b \neq 0$, then $(ab)^{-1} = a^{-1}b^{-1}$.

Proof. By definition (I.8), $(ab)^{-1}$ is the unique number such that $(ab)(ab)^{-1} = 1$. But $a^{-1}b^{-1}$ also has this property: $(ab)a^{-1}b^{-1} = aa^{-1}bb^{-1} = 1 \cdot 1 = 1$ (Axioms 1, 2 and 6). Therefore, $(ab)^{-1} = a^{-1}b^{-1}$.

Problem 9 -(a/b) = (-a)/b = a/(-b) if $b \neq 0$.

Proof. By definition (I.2), -(a/b) is the unique number such that a/b + (-(a/b)) = 0. We now show (-a)/b also has this property:

$$\begin{aligned} a/b + (-a)/b &= ab^{-1} + (-a)b^{-1} & (I.9) \\ &= (a + (-a))b^{-1} & (Axiom 3) \\ &= 0 \cdot b^{-1} & (I.2) \\ &= 0 & (I.6) \end{aligned}$$

Therefore, (-a)/b = -(a/b).

Finally, we prove the same result for a/(-b). First observe that $(-(b^{-1}))(-b) = b^{-1}b = 1$ by I.12 and I.8, so that $(-b)^{-1} = -(b^{-1})$. Then

$$\begin{array}{rcl} a/b + a/(-b) &=& ab^{-1} + a(-b)^{-1} & (\text{I.9}) \\ &=& a(b^{-1} + (-b)^{-1}) & (\text{Axiom 3}) \\ &=& a(b^{-1} - b^{-1}) & (\text{just shown above}) \\ &=& a \cdot 0 & (\text{I.2}) \\ &=& 0 & (\text{I.6}) \end{array}$$

Problem 10 (a/b) - (c/d) = (ad - bc)/(bd) if $b \neq 0$ and $d \neq 0$.

Proof. The proof I gave in class was the following: (ad - bc)/(bd), is, by definition (I.8), the unique number that when multiplied by bd gives ad - bc. But (a/b) - (c/d) also has this property:

$$bd((a/b) - (c/d)) = bdab^{-1} - bdcd^{-1} \quad (I.5 \text{ and } I.9) \\ = adbb^{-1} - bcdd^{-1} \quad (Axiom 1) \\ = ad - bc \quad (I.12)|$$

Therefore, (a/b) - (c/d) = (ad - bc)/(bd). Here's a different proof:

$$\begin{aligned} (a/b) - (c/d) &= a/b + (-c)/d & (\text{Problem 9}) \\ &= (ad + (-c)b)/(bd) & (\text{I.13}) \\ &= (ad - cd)/(bd) & (\text{I.12})| \end{aligned}$$

Page 21.

Problem 2 There is no real number x such that $x^2 + 1 = 0$.

Proof. By I.20, $x^2 > 0$ for any real number x. Then, by I.18, Axiom 4, and I.21, $x^2 + 1 > 0 + 1 = 1 > 0$. In particular, by I.16, $x^2 + 1 \neq 0$ for any real number x. \Box

Problem 4 If a > 0, then 1/a > 0; if a < 0, then 1/a < 0.

Proof. By definition (I.8) and I.21, a(1/a) = 1 > 0. If a > 0, then I.24 implies that 1/a > 0, and if a < 0, then I.24 implies that 1/a < 0.

Problem 5 If 0 < a < b, then $0 < b^{-1} < a^{-1}$.

Proof. By assumption, $a, b \in \mathbb{R}^+$ and $b - a \in \mathbb{R}^+$. Axiom 7 says that $ab \in \mathbb{R}^+$ and Problem 4 implies that 1/b > 0 and $1/(ab) = (ab)^{-1} > 0$. Since 1/a - 1/b = (b-a)/(ab) by Problem 10 on p.19, and since $(b-a)/(ab) = (b-a)(ab)^{-1} > 0$ by I.9 and Axiom 7, we conclude that 1/a - 1/b > 0. Therefore, 0 < 1/b < 1/a. \Box

Problem 9 There is no real number a such that $x \leq a$ for all real x.

Proof. (By contradiction.) Suppose there really is a real number a such that $x \leq a$ for all real numbers x (note that a is fixed and the inequality must hold no matter what x we choose). Let us consider x = a + 1. Since 1 > 0 by I.21, we find that x = a + 1 > a by I.18. This contradicts our assumption that $x \leq a$ (see I.16). Therefore our assumption can never be true and there is no real number a such that $x \leq a$ for all x.

Problem 10 If x has the property that $0 \le x < h$ for *every* positive real number h, then x = 0.

Proof. Let x be a (fixed) real number that has the above property. By assumption, $x \ge 0$. Suppose x > 0, and consider the positive real number x/2. We are assuming that x is less than *every* positive real number, including x/2. But x < x/2 implies that x < 0 (use I.18 and I.19). This contradiction implies our assumption that x > 0 is false and hence x = 0.