Math 165: Honors Calculus I Assignment 9 Sept. 15, 1999

- 1. Problem 13 on p. 45.
- 2. Let A and B be non-empty sets of real numbers bounded above and below, respectively.
 - a) Show that for any $k < \sup A$ there exists a number $a \in A$ such that k < a.
 - b) Show that for any $h > \inf B$ there exists a number $b \in B$ such that b < h.
- 3. Let A and B be sets of real numbers with $A \neq \emptyset$ and $A \subset B$. Prove:
 - a) If A and B are bounded above, then $\sup A \leq \sup B$.
 - b) If A and B are bounded below, then $\inf B \leq \inf A$.
- 4. For $0 \le x \le 1$ define

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

Prove:

- a) If s and t are step functions satisfying $s(x) \leq f(x) \leq t(x)$ for all $0 \leq x \leq 1$, then $s(x) \leq 0$ and $t(x) \geq 1$, except possibly at partition points.
- b) $\underline{I}(f) = 0$, $\overline{I}(f) = 1$, and f is not integrable.