Math 165: Honors Calculus I Assignment 16 Oct. 10, 1999

- 1. Show that $\lim_{x \to 0^+} \sqrt{x} = 0.$ (Hint: $0 < x < \delta \Rightarrow 0 < \sqrt{x} < \sqrt{\delta}.$)
- 2. Show that $\lim_{x\to 0^+} x^{1/n} = 0$ for $n \in$.
- 3. Show that $\lim_{x\to 0^-} x^{1/n} = 0$ for n an odd positive integer.
- 4. Let $f(x) = \frac{|x|}{x}$ for $x \neq 0$. Use one-sided limits to show that $\lim_{x \to 0} f(x)$ does not exist.
- 5. Let $f(x) = x^2$ and let $p \in$.
 - a) Show that if |x p| < 1 then |x| < |p| + 1. (Hint: consider $||x| - |p|| \le |x - p|$.)
 - b) Show that if |x p| < 1 then $|x^2 p^2| < (2|p| + 1)|x p|$.
 - c) Show that $\lim_{x \to p} x^2 = p^2$. (Hint: try $\delta = \min(1, \frac{\epsilon}{2|p|+1})$.)