EXAMPLES OF A LIMIT NOT EXISTING

MATH 165: HONORS CALCULUS I

The definition of $\lim _{x \rightarrow p} f(x)=A$ is:
For all $\epsilon>0$ there exists a $\delta>0$ such that if x is any number satisfying $0<|x-p|<\delta$ then $|f(x)-A|<\epsilon$.

The easiest way to show a limit does not exist is to calculate the one-sided limits, if they exist, and show they are not equal. For example, if $f(x)=[x]$, then $\lim _{x \rightarrow 2^{-}} f(x)=1$ and $\lim _{x \rightarrow 2^{+}} f(x)=2$, so $\lim _{x \rightarrow 2} f(x)$ does not exist.

It is possible that the one-sided limits do not exist either and the question arises, what exactly do you have to prove to show a limit does not exist. The negation of the definition given above is somewhat complicated and leads to the following:

For any A, there exists an $\epsilon>0$ such that for all $\delta>0$, there is an x satisfying $0<|x-p|<\delta$ and $|f(x)-A| \geq \epsilon$.

The idea is that for any proposed "limit" A, we can prove that there are points x close to $p(|x-p|<\delta)$, for which $f(x)$ is far away from $A(|f(x)-A| \geq \epsilon)$.

Example 1: Let

$$
f(x)= \begin{cases}0 & \text { if } x \text { is rational } \\ 1 & \text { if } x \text { is irrational }\end{cases}
$$

For any number p, the limit $\lim _{x \rightarrow p} f(x)$ does not exist.
Proof: Let A be any number. Case 1): Assume $A \neq 0$. Then set $\epsilon=|A| / 2>0$. No matter what the value of δ is, there is a rational number q satisfying $|q-p|<\delta$ (any interval contains a rational number) and hence $|f(q)-A|=|0-A|=|A|>$ $|A| / 2=\epsilon$. Case 2) Assume $A=0$. Then set $\epsilon=1 / 2$. No matter what the value of δ is, there is an irrational number r satisfying $|r-p|<\delta$ (any interval contains a irrational number) and hence $|f(r)-A|=|1-0|=1>1 / 2=\epsilon$.
Example 2: $\lim _{x \rightarrow 0} \sin (1 / x)$ does not exist.
Proof: Regardless of what A is given, we can take $\epsilon=1$. Case 1): Assume $A \geq 0$. For any $\delta>0$ there is a positive integer n such that $x=1 /(3 \pi / 2+2 n \pi)<\delta$. Then $\sin (1 / x)=\sin (3 \pi / 2)=-1$ so $|\sin (1 / x)-A| \geq 1=\epsilon$. Case 2$)$: Assume $A<0$. For any $\delta>0$, there is a positive integer n such that $x=1 /(\pi / 2+2 n \pi)<\delta$. Then $\sin (1 / x)=\sin (\pi / 2)=1$, so $|\sin (1 / x)-A|>1=\epsilon$.

[^0]
[^0]: Date: Fall, 1999.

