EXAMPLES OF A LIMIT NOT EXISTING

MATH 165: HONORS CALCULUS I

The definition of $\lim_{x\to p} f(x) = A$ is:

For all $\epsilon > 0$ there exists a $\delta > 0$ such that if x is any number satisfying $0 < |x - p| < \delta$ then $|f(x) - A| < \epsilon$.

The easiest way to show a limit does not exist is to calculate the one-sided limits, if they exist, and show they are not equal. For example, if f(x) = [x], then $\lim_{x \to 2^-} f(x) = 1$ and $\lim_{x \to 2^+} f(x) = 2$, so $\lim_{x \to 2} f(x)$ does not exist.

It is possible that the one-sided limits do not exist either and the question arises, what exactly do you have to prove to show a limit does not exist. The negation of the definition given above is somewhat complicated and leads to the following:

For any A, there exists an $\epsilon > 0$ such that for all $\delta > 0$, there is an x satisfying $0 < |x - p| < \delta$ and $|f(x) - A| \ge \epsilon$.

The idea is that for any proposed "limit" A, we can prove that there are points x close to $p(|x-p| < \delta)$, for which f(x) is far away from $A(|f(x) - A| \ge \epsilon)$.

Example 1: Let

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational} \end{cases}$$

For any number p, the limit $\lim_{x\to p} f(x)$ does not exist.

Proof: Let A be any number. Case 1): Assume $A \neq 0$. Then set $\epsilon = |A|/2 > 0$. No matter what the value of δ is, there is a rational number q satisfying $|q-p| < \delta$ (any interval contains a rational number) and hence $|f(q) - A| = |0 - A| = |A| > |A|/2 = \epsilon$. Case 2) Assume A = 0. Then set $\epsilon = 1/2$. No matter what the value of δ is, there is an irrational number r satisfying $|r-p| < \delta$ (any interval contains a irrational number) and hence $|f(r) - A| = |1 - 0| = 1 > 1/2 = \epsilon$.

Example 2: $\lim_{x\to 0} \sin(1/x)$ does not exist.

Proof: Regardless of what A is given, we can take $\epsilon=1$. Case 1): Assume $A\geq 0$. For any $\delta>0$ there is a positive integer n such that $x=1/(3\pi/2+2n\pi)<\delta$. Then $\sin(1/x)=\sin(3\pi/2)=-1$ so $|\sin(1/x)-A|\geq 1=\epsilon$. Case 2): Assume A<0. For any $\delta>0$, there is a positive integer n such that $x=1/(\pi/2+2n\pi)<\delta$. Then $\sin(1/x)=\sin(\pi/2)=1$, so $|\sin(1/x)-A|>1=\epsilon$.

Date: Fall, 1999.