amsppt

Solutions to Math 126, Test 2

1a. We have

$$
f(x+h) - (f(x)h = \sqrt{(x+h)^2 + 1} - \sqrt{x^2 + 1}h = (x+h)^2 + 1 - x^2 - 1h(\sqrt{(x+h)^2 + 1} + \sqrt{x^2 + 1}) =
$$

$$
2xh + h^2h(\sqrt{(x+h)^2 + 1} + \sqrt{x^2 + 1}) = 2x + h\sqrt{(x+h)^2 + 1} + \sqrt{x^2 + 1}h \to 0 \to \to 2x^2\sqrt{x^2 + 1}
$$

Therefore $f'(x) = x\sqrt{x^2 + 1}$.

1b.We have that

$$
f(x) = \{ \sin x, x \in [2k\mathcal{H}, (2k+1)\mathcal{H}]
$$

At the points $x = k\pi, k \in \mathbb{Z}, f(x)$ is not differentiable since the derivative from the right is equal to 1 and the derivative from the left is -1 . If $x \neq k\pi$, then

$$
f'(x) = \{ \cos x, x \in (2k\pi, (2k+1)\pi)
$$

By applying L'Hopital's rule three times we have $\lim_{x\to 0} (1x\sin x-1x^2) = \lim_{x\to 0} 1 - \cos x 2x \sin x + x$

$$
\lim_{x \to 0} \sin x 2 \sin x + 4x \cos x - x^2 \sin x = \lim_{x \to 0} \cos x 6 \cos x - 6x \sin x - x^2 \cos x = 16.
$$

2b. We have that $W(x) \cong W(0) + W'(0)x$. Since

$$
W'(x) = -2mgR^2(R+x)^3
$$

We have $W(x) \cong mg - 2mgRx = mg(1 - 2xR)$.

3a. We have $f'(x) = 20x^4 - 20x^3 = 20x^3(x - 1) = 0$ if $x = 0, 1$. $f''(x) = 80x^3 - 60x^2 = 0$ $20x^2(4x-3) = 0$ if $x = 0, 3$. Thus, $f'(x) < 0$ for $x \in (0, 1)$ and $f'(x) > 0$ for $x \in (-\infty, 0) \cup$ (1, ∞). $f''(x) > 0$ for $x > 34$. $f''(x) < 0$ for $x < 34$, $x \neq 0$. $f(0) = 2$ and $f(1) = 1$.

3b. Since f is decreasing on $(0, 1)$, increasing on $(1, \infty)$ and $f(1) = 1 > 0$ we have that $f(x) \ge 1 > 0$ on $(0, \infty)$. Thus, there is no real zero of $f(x)$ in $(0, \infty)$. Since $f(0) = 2$ and $f(-1) = -7$ by the intermediate value theorem f has a zero in the interval $(-1, 0)$. Now we will show that there is no other real zero of $f(x)$ in $(-\infty, 0)$. In fact, if there were two zeros $x_1, x_2 \in (-\infty, 0), x_1 < x_2$ then, by the mean value theorem, we would have $0 = f(x_2) - f(x_1) = f'(\xi)(x_2 = x_1)$ for some $\xi \in (x_1, x_2)$.

This would imply $f'(\xi) = 0, \xi < 0$ which is impossible since f' vanishes only for $x=0$ or 1.

4. Let r be the radius of the base and h the height of the cylinder. We have Volume $V = \pi r^2 h$. Surface area $S = 2\pi rh + 2\pi r^2$. If V is fixed, then $h = V \pi r^2$ and $S = S(r)$ $2\pi r V \pi r^2 + 2\pi r^2 = 2VV + 2\pi r^2.$

Want to minimize $S(r)$ for $r \in (0,\infty)$. We have

$$
S'(r) = -2Vr^{2} + 4\pi r \text{ and } S'(r) = 0 \text{ if } r = \sqrt[3]{V2\pi}.
$$

Since $S'(r) > 0$ for $r > \sqrt[3]{V2\pi}$ and $S'(r) < 0$ for $r < \sqrt[3]{V2\pi}$ we have that $S(r)$ is minimum for $r = \sqrt[3]{V2\pi}$.

mum for $r = \sqrt{V 2\pi}$.
Thus the surface area takes its minimum for $r = \sqrt[3]{V2\pi}$ and $h = V(V2\pi)^2$ 3.

5a. Let $f(x) = 11 + x^2$. We have $f'(x) = -2x(1 + x^2)^2 = 0$ Iff $x = 0$.

Since $f'(x) > 0$ for $x < 0$ and $f'(x) < 0$ for $x > 0$, f takes its global maximum at $x = 0$. Thus $SupA = f(0) = 1$. Since $f(x) > 0$ for all $x \in R$ and $\lim_{x \to \pm \infty} f(x) = 0$ we have $inf A = 0.$

5b. By the chain rule, we have $f'(x) = \cos(g(x)) \cdot g'(x)$. Thus, $f'(1) = \cos(g(1)) g'(1) =$ $\cos(0) \cdot g'(1) = 1 \cdot 5 = 5.$