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Improper Integrals

Assume that f : [a,00) — R is a function such that for any b € (a, c0), f is integrable on
la,b]. If

lim /ab f(z)dz.

b—oo

exists and is finite, then we say that the improper integral of f on (a,c0) converges and
we write

0 b
/ f(@)dz = lim [ f(z)dz.

a

Example. Let p > 0. If p # 1 then

b
I(b) = / laPde = 2 P —p+ 1|l{ =11 —p[b'™P —1]
1

If p> 1 then I(b) — 1p — 1 as b — oo and therefore
/ laPde =1p—1, p> 1.
1

If 0 < p <1, then I(b) — oo and the improper integral floo laPdx diverges. If p =1 then
I(b) = Inz|} = Inb — oo as b — .
Therefore we have the

Theorem 1

/ laPdr = { 1p— 1lif
1
AN
b
I(b) = / e “dr = —1ae*a‘”‘|8 =1la(l —e ) — la as b — oo.
0

Therefore, fooo e~ dx converges to la if a > 0. It diverges if a < 0.
Similarly, we define

/_ f(x)dx = lim f(x)dx

—_—
(¢4 oo a

if f is integrable on [a, b] for any a < b and the above limits exist and is finite.
Also, we define

00 b c
/ f(z)dx = blirgo f(z)dz + ali)rzloo f(z)dz

C a

if f is integrable on any interval [a,b] and both limits above exist and are finite.
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If a function f is unbounded and on (a,b] it is integrable on [a + €, b] for any € > 0 and

lim,_.o f; .. J(z)dz exists and is finite, then we say that the improper integral of f over
(a,b] converges and we write

b b
/ f(x)dzr = lim f(x)dz
a e—0 a+e

Example. Let p > 0. We have

I(e)z/llx”daj:{ 11 —pla—e"Plifp#1
If0<e<1then I(e) — 11 —p as e — 0 and if 1 < p then I(e) — oo as e — 0.
Therefore, we have
Theorem 2.
/Ollxpd;v:{ 11 — pif
Oipil

If a function f is integrable on [a,b — €] for any € > 0 and unbounded on [a,b), then we
define

—_
€ 0 a

/baf@: e tim [ (@)

if the above limit exists and is finite.

Finally, we define

c b—e
/ f(x)dz = hm f(x)dz + limO f(x)dx

—
“+e € c

if f is integrable on any interval [a 4+ €, b — €] but unbounded on (a, ¢] and [c,b), ce(a,b),
and if both limits above exist and are finite.

/i1u—x%M

f(z) =1(1—2*)'4

Example. The integral

is improper since

is unbounded on both intervals [0,1) and (—1,0]. We will show later that it converges.
Convergence Tests for Improper Integrals

2



Here we will discuss only infinite integrals of the form

/a " f () da

where the function f is integrable over any interval [a, b],b > a. The tests for the integrals
of the form ffoo f(x)dx are reduced to the above case by the substitution t = —z. Also,

the substitution t = 1o — a or t = 1z — b reduces the improper integrals ff f(z)dx to the
above case.

Theorem 1 (Cauchy criterion). Suppose that the function f is integrable over any
interval [0,b),b < a. Then the improper integral [ f(x)dx converges if and only if for
every € > 0 there exists N = N(e) such that

d
chZN:>|/ f(z)dz| < e

Remark. In other words, the Cauchy criterion says that faoo f(x)dz converges if and
only if

d
/ f(x)dx — 0 as ¢ — 0.

Example. The infinite integral floo drz?dr converges since

d
\/ draz?| =1d — 1c < 2¢ — 0 as ¢ — 0.
C

Example. The integral floo dxx does not converge since for ¢ > 1 we have
62
|/ dex|=Inc* —Inc=Inc— 00 as c — 0.
C

Proof. Supposefirstthattheintegralconverges,i.e.I(b) = f: f(x)de — I asb — .
Then by the definition of the limit for any e > 0 there exists N = N(€) > a such that

b> N = [I(b)—I| < €2

Therefore, if d > ¢ > N then

d
|/ flzx)dx| = |I(d) —I(c)| < |I(d) —I|+ |I(c) —I| < e2+€e2=c¢

Conversely, we assume that (*) holds. The sequence of numbers I(k) is a Cauchy sequence.
Such sequences always converge. This is a fact following from the construction of the real
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numbers. Therefore, there exists a real number I such that I(k) — I as k — oo. Thus
for any b > a we have

Ib)=[0b)—Ik)]+Ik)—Tif k>b—
since I(k) — I and I(k) — I(b) — 0 by (*).
Next we have

Theorem 2. Assume that f(x) > 0 for > a and that it is integrable on [a, b] for any
b > a. Then faoo f(x)dx converges if and only if there exists M such that

b
/ f(x)dx < M forany b > a.

Proof. Since f(x) > 0 the function

b
I(b) :/ f(x)dx, a>b
is increasing. Therefore, I(b) converges as b — oo if and only if 7(b) is bounded.

Example. The integral floo 122 + 2 + 1dz converges since

b b
/ 1x2+x+1d93§/ 122de=1—-1b< 1 forany b > 1.
1 1

Theorem 3. (Comparison Test). Suppose that f(z),g(x)and h(zx) are integrable on [a, b]
for any b > @ and that 0 < g(x) < 1|f(x)| < h(x) for any x > A, where A is some number
with A > a. We have the following:

a) If [ h(x)dz converges, then [ f(z)dx converges.

b) If [ g(x)dz = oo and f(x) >0 then [ f(x)dz = oco.

Example. The integral floo sin zxdr converges since for z > 1 we have |sin r2?| < 122
and [~ 12?dz < occ.

Example. The integral floo Vx2x + 1dx diverges since for x > 1

V2w + 1> 22z + 7 = 131z

and [ 131y/z diverges.



Proof. We will use the Cauchy criterion for g(z). Let € > 0. Since [ g(z)dz converge,
there exists N = N(e) > a such that

d
dzczN:>/ g(z)dr < e.

Then for d > ¢ > N we have
d d d
[ sl < [ 1@l < [ gloydn <

Therefore [ f(x)dx converges.

Example. (Gamma Function) Let s > 0 and
flz) =2t x¢€(0,00).

For s > 1 the function f(z) is bounded on any interval [0,a], a > 0. Since

s—le—me—IQ — .I‘S_l —12x

T e —0 as r —

we have that there is A > 0 such that
e e 120 <1, for x> A.

Therefore
0<zslem® < e 122 for x> A.

By the comparison test, the integral fooo z~le~®dx converges to a finite number which we
denote by I'(s), i.e.

oo
I'(s) = / ¥ e dx, s > 1.
0
If 0 < s < 1 then the function f(x) = 2°~ e~ is unbounded near 0. Since
0<z*le®<1z'™% 0<z<1

and fol dxx'=* converges for 0 < s < 1 we have, by the comparison test, that fol ¥ e "dx
converges.

If0<s<land z > 1then 0 < 25 le™® < ¢ ® and since floo e~ *dx converges, by
the comparison test we conclude that floo x*"le ®dx converges. Therefore, we have that

fooo 5 Le™®dx converges for any s > 0 to a finite number which is denoted by I'(s) and it
is called the Gamma function, i.e.

I'(s) :/ w5 te *dx, s> 0.
0
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If s > 1, then by integrating by parts we obtain

I'(s) = / 5 d(—e ) = —25 e | + (s — 1)/ ¥ 2e %y
0 0
Thus, if s > n by integrating by parts repeatedly we obtain
I(s)=(s—1)(s—=2)---(s—n)['(s —n)
In particular we obtain I'(n + 1) =n(n—1)-1-T'(1) = n! since I'(1) = 1.

12

Example. Since e~
that

< e~ " for x > 1 the integral fooo e~ d converges. It can be shown

/ e~ dr = 12/
0
(See p. 371, no. 54.)

Theorem 4. (Limit Comparison Test) Suppose f(x) > 0 and g(z) > 0 and that they
are integrable on any interval [a,b], b > a. If

lim f(z)g(x) =1#0

r— 00

then either both integrals

/aoo f(x)dx and /aoo g(z)dx

converge or they both diverge.
Example. The integral floo 2z — 12° + 23 + xdx converges since

20 — 125 + 23 + 11zt =225 — 2% + 23 +1 @>> 2 — 00> 240

and since floo lztdr < oo.

Example. The integral

/ 1v/ 22 + 5z + 8dx
1

diverges since

Va2 +bx+8le =xvVa?+52+8=1V1+5x+822Q >>x — 00 >1#0

and floo ledr = .



Proof of Theorem 4. Since lim f(z)g(xz) = [ > 0, by the definition of the limit for

xr— 00

€ = [2 there exists A = A(e) such that
x> A= |f(x)g(x) =1 <I2.
The last relation is written as

—12< f(x)g(x)—1<12, > A

or

12 < f(z)g(x) <312, x> A

or

12g(x) < f(z) < 312¢9(x), x> A

By Thoeorem 4 the last relation implies that

/aoo F(@)da /aoo o(z)dz

are either both converging or both diverging.

Example. None of the convergence tests we discussed above can be used to show that

[ee]
/ sin zxdx
1

converges. This integral converges because of two reasons:

i) For any b > 1, ]flb sinxzdx| < 2.

ii) The function g(x) = 1z is decreasing on any interval [1,5], b > 1.
The convergence of the above integral follows from:

Theorem 5 (Dirichlet’s Test) If
i) f is continuous on [a,00) and there is M such that

b
‘/ f(x)dx| < M, foranyb>a

and ii) g is a decreasing-continuously differentiable function on [a, c0) with g(z) — 0 as = —|}
0o, then



/ " f@)g(a)ds

converges.

Remark. The condition that g is continuously differentiable can be dropped.To prove The-
orem 5, we need the version of the Second Mean Value Theorem for Integrals. Let
f(z) be continuous on [a, b] and g(z) be decreasing and continuously differentiable on [a, b].
Then there exists £ € [a, b] such that

b ¢ b
z)g(x)dxr = g(a x)dx b x)dx.
| @@yt = gte) [ 1) +g()/§f()
Proof. Let N
F(x) :/ f(t)adt.

Then by the Fundamental Theorem of Calculus, we have F'(x) = f(x). Integrating by
parts, we obtain

b b b
/f(w)g(x)dxz/ g(ﬂf)d(F(ﬂﬁ))Zg(w)F(fﬁ)IZ—/ F(x)g' (x)d.

Since —¢’(x) > 0 on [a, b] by the Mean Value Theorem for integrals we obtain that there
is £ € [a, b] such that

I
=
i
~—

s\
o

N
Q\
—~
&

N~—
SN—
ISH
&

b
/ F(z)(—g(2))dx

Therefore )
/ f(z)g(z)dz = g(b)F'(b) — g(a)F(a) — F(&)/ g'(z)dx

Proof of Theorem 5. Let d > ¢ > a. By the last result there exists £ € [¢, d] such that

/cd f@y(@)ds = g(c) [ " fa)de + g(d) /5 @)

since

\/jf(a:)dx]: ]/jf(x)dx—/acf(x)da:I < \/;f(x)dxm/jf(x)\dxgzM.

and similarly
d
[ oy < 21
3
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we have that

d
\/ f(z)g(x)dx| < g(c)2M + g(d)2M = 4Mg(c)@Q >> ¢ — o0 >0
Therefore, by the Cauchy criterion faoo f(x)g(z)dx converges.

Example. If p > 0 then the integral

oo
/ sin zzPdx
1

converges since, if we let f(z) = sinx and g(x) = 12P, then f and g satisfy the assumptions
of Theorem 5. In fact, for p > 1 it follows by the Comparison Test since

oo
|sinzzP| < 12P and / lzPdx < oo.
1

Also, the integral fooo sin zxdx converges since for x > 1 we can use the Dirichlet’s test
and since sin zz is continuous on [0, 1]. It can be shown (see p. 372, no. 55) that

o
/ sin zxdx = 2.
0

Remark We remark here that
/ | sin z|xdx = oco.
0

In fact, for any k = 2,3,4,---

00 3 km
/ | sin x|zdx > / 27| sin x|xdx + / |sinx|zdx + - - - + / |sinz|xdz
0 T 27 (k—1)m

Since

j+1
15 >/ ladx
J
We have

o0 3 4 k+1 k+1
/ |sinz|x > 27[/ ladz +/ ledr + - - - +/ ledz] > 27‘(’/ ladz.
0 2 3 k 2

/ |sinx|x227r/ lzdr = .
0 2
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By the comparison test we have seen that if [ |f(x)|dz converges, then so does the
integral [ f(z)dz.

The last remark shows that the converse is not true. If [~ |f(z)|dz converges, then we
say that the improper integral of f is absolutely convergent.

Exercises.
1. Show that [, sin(z?)dz is convergent. (Hint: Let the substitution ¢ = z%.)

2. Show that the integral [°](1 — 2%)~'*dx is convergent.

3. Compute the integral [~ 2® + 22 + 1% 4 23dx.
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