amsppt

Improper Integrals

Assume that $f:[a,\infty) \longrightarrow R$ is a function such that for any $b \in (a,\infty)$, f is integrable on [a,b]. If

$$\lim_{b \to \infty} \int_{a}^{b} f(x) dx.$$

exists and is finite, then we say that the <u>improper integral</u> of f on (a, ∞) converges and we write

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx.$$

<u>Example.</u> Let p > 0. If $p \neq 1$ then

$$I(b) = \int_{1}^{b} 1x^{p} dx = x^{-p+1} - p + 1|_{1}^{b} = 11 - p[b^{1-p} - 1]$$

If p > 1 then $I(b) \longrightarrow 1p - 1$ as $b \longrightarrow \infty$ and therefore

$$\int_{1}^{\infty} 1x^{p} dx = 1p - 1, \ p > 1.$$

If $0 , then <math>I(b) \longrightarrow \infty$ and the improper integral $\int_1^\infty 1x^p dx$ diverges. If p = 1 then $I(b) = \ln x|_1^b = \ln b \longrightarrow \infty$ as $b \longrightarrow \infty$. Therefore we have the

Theorem 1

$$\int_{1}^{\infty} 1x^{p} dx = \{ 1p - 1if$$

р ; 1

$$I(b) = \int_0^b e^{-ax} dx = -1ae^{-ax}|_0^b = 1a(1 - e^{-ab}) \longrightarrow 1a \ as \ b \longrightarrow \infty.$$

Therefore, $\int_0^\infty e^{-ax} dx$ converges to 1a if a > 0. It diverges if a < 0. Similarly, we define

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$

if f is integrable on [a,b] for any $a \leq b$ and the above limits exist and is finite. Also, we define

$$\int_{-\infty}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{c}^{b} f(x)dx + \lim_{a \to -\infty} \int_{a}^{c} f(x)dx$$

if f is integrable on any interval [a, b] and both limits above exist and are finite.

If a function f is unbounded and on (a,b] it is integrable on $[a + \epsilon, b]$ for any $\epsilon > 0$ and $\lim_{\epsilon \to 0} \int_{a+\epsilon}^{b} f(x) dx$ exists and is finite, then we say that the <u>improper integral</u> of f over (a, b] converges and we write

$$\int_{a}^{b} f(x)dx = \lim_{\epsilon \to 0} \int_{a+\epsilon}^{b} f(x)dx.$$

<u>Example.</u> Let p > 0. We have

$$I(\epsilon) = \int_{\epsilon}^{1} 1x^{p} dx = \{ 11 - p[a - \epsilon^{1-p}] if \ p \neq 1$$

If $0 < \epsilon < 1$ then $I(\epsilon) \longrightarrow 11 - p$ as $\epsilon \longrightarrow 0$ and if $1 \le p$ then $I(\epsilon) \longrightarrow \infty$ as $\epsilon \longrightarrow 0$.

Therefore, we have

Theorem 2.

$$\int_{0}^{1} 1x^{p} dx = \{ 11 - pif \}$$

 $0 \mid p \mid 1$

If a function f is integrable on $[a, b - \epsilon]$ for any $\epsilon > 0$ and unbounded on [a, b), then we define

$$\int_{b}^{a} f(x)dx = \lim_{\epsilon \longrightarrow 0} \int_{a}^{b-\epsilon} f(x)dx$$

if the above limit exists and is finite.

Finally, we define

$$\int_{a}^{b} f(x)dx = \lim_{\epsilon \longrightarrow 0} \int_{a+\epsilon}^{c} f(x)dx + \lim_{\epsilon \longrightarrow 0} \int_{c}^{b-\epsilon} f(x)dx$$

if f is integrable on any interval $[a + \epsilon, b - \epsilon]$ but unbounded on (a, c] and [c, b), $c\epsilon(a, b)$, and if both limits above exist and are finite.

Example. The integral

$$\int_{-1}^{1} 1(1-x^2)^1 4$$

is improper since

$$f(x) = 1(1 - x^2)^1 4$$

is unbounded on both intervals [0, 1) and (-1, 0]. We will show later that it converges. Convergence Tests for Improper Integrals Here we will discuss only infinite integrals of the form

$$\int_{a}^{\infty} f(x) dx$$

where the function f is integrable over any interval $[a, b], b \ge a$. The tests for the integrals of the form $\int_{-\infty}^{a} f(x) dx$ are reduced to the above case by the substitution t = -x. Also, the substitution t = 1x - a or t = 1x - b reduces the improper integrals $\int_{a}^{b} f(x) dx$ to the above case.

<u>**Theorem 1**</u> (Cauchy criterion). Suppose that the function f is integrable over any interval $[0,b), b \leq a$. Then the improper integral $\int_a^{\infty} f(x) dx$ converges if and only if for every $\epsilon > 0$ there exists $N = N(\epsilon)$ such that

$$d \ge c \ge N \Longrightarrow |\int_c^d f(x)dx| < \epsilon.$$

*

<u>Remark.</u> In other words, the Cauchy criterion says that $\int_a^{\infty} f(x) dx$ converges if and only if

$$\int_{c}^{d} f(x)dx \longrightarrow 0 \ as \ c \longrightarrow \infty.$$

Example. The infinite integral $\int_1^\infty dx x^2 dx$ converges since

$$\left|\int_{c}^{d} dx x^{2}\right| = 1d - 1c \leq 2c \longrightarrow 0 \ as \ c \longrightarrow \infty.$$

Example. The integral $\int_{1}^{\infty} dxx$ does not converge since for $c \geq 1$ we have

$$\left|\int_{c}^{c^{2}} dxx\right| = \ln c^{2} - \ln c = \ln c \longrightarrow \infty \text{ as } c \longrightarrow \infty.$$

<u>Proof.</u> Suppose first that the integral converges, i.e. $I(b) = \int_a^b f(x) dx \longrightarrow I$ as $b \longrightarrow \infty$. Then by the definition of the limit for any $\epsilon > 0$ there exists $N = N(\epsilon) \ge a$ such that

$$b \ge N \Rightarrow |I(b) - I| < \epsilon 2$$

Therefore, if $d \ge c \ge N$ then

$$|\int_{c}^{d} f(x)dx| = |I(d) - I(c)| \le |I(d) - I| + |I(c) - I| < \epsilon 2 + \epsilon 2 = \epsilon$$

Conversely, we assume that (*) holds. The sequence of numbers I(k) is a <u>Cauchy sequence</u>. Such sequences always converge. This is a fact following from the construction of the real numbers. Therefore, there exists a real number I such that $I(k) \longrightarrow I$ as $k \to \infty$. Thus for any $b \ge a$ we have

$$I(b) = [I(b) - I(k)] + I(k) \longrightarrow I \ if \ k \ge b \longrightarrow \infty$$

since $I(k) \longrightarrow I$ and $I(k) - I(b) \longrightarrow 0$ by (*).

Next we have

<u>Theorem 2.</u> Assume that $f(x) \ge 0$ for $x \ge a$ and that it is integrable on [a, b] for any $b \ge a$. Then $\int_a^\infty f(x)dx$ converges if and only if there exists M such that

$$\int_{a}^{b} f(x)dx \le M \text{ for any } b \ge a.$$

<u>Proof.</u> Since $f(x) \ge 0$ the function

$$I(b) = \int_{a}^{b} f(x) dx, \ a \ge b$$

is increasing. Therefore, I(b) converges as $b \longrightarrow \infty$ if and only if I(b) is bounded.

Example. The integral $\int_1^\infty 1x^2 + x + 1dx$ converges since

$$\int_{1}^{b} 1x^{2} + x + 1dx \le \int_{1}^{b} 1x^{2}dx = 1 - 1b \le 1 \text{ for any } b \ge 1.$$

Theorem 3. (Comparison Test). Suppose that f(x), g(x) and h(x) are integrable on [a, b] for any $b \ge a$ and that $0 \le g(x) \le 1|f(x)| \le h(x)$ for any $x \ge A$, where A is some number with $A \ge a$. We have the following:

- a) If $\int_a^{\infty} h(x) dx$ converges, then $\int_a^{\infty} f(x) dx$ converges.
- b) If $\int_a^{\infty} g(x) dx = \infty$ and $f(x) \ge 0$ then $\int_a^{\infty} f(x) dx = \infty$.
- **Example.** The integral $\int_1^\infty \sin xx dx$ converges since for $x \ge 1$ we have $|\sin xx^2| \le 1x^2$ and $\int_1^\infty 1x^2 dx < \infty$.

Example. The integral $\int_1^{\infty} \sqrt{x} 2x + 1 dx$ diverges since for $x \ge 1$

$$\sqrt{x}2x + 1 \ge \sqrt{x}2x + x = 131\sqrt{x}$$

and $\int_1^\infty 131\sqrt{x}$ diverges.

<u>Proof.</u> We will use the Cauchy criterion for g(x). Let $\epsilon > 0$. Since $\int_a^{\infty} g(x) dx$ converge, there exists $N = N(\epsilon) \ge a$ such that

$$d \ge c \ge N \Longrightarrow \int_c^d g(x) dx < \epsilon.$$

Then for $d \ge c \ge N$ we have

$$\left|\int_{c}^{d} f(x)dx\right| \leq \int_{c}^{d} |f(x)|dx \leq \int_{c}^{d} g(x)dx < \epsilon.$$

Therefore $\int_{a}^{\infty} f(x) dx$ converges.

<u>Example.</u> (Gamma Function) Let s > 0 and

$$f(x) = x^{s-1}e^{-x}, \ x \in (0,\infty).$$

For $s \ge 1$ the function f(x) is bounded on any interval [0, a], a > 0. Since

$$x^{s-1}e^{-x}e^{-12} = x^{s-1}e^{-12x} \longrightarrow 0 \quad as \quad x \to \infty$$

we have that there is A > 0 such that

$$x^{s-1}e^{-x}e^{-12x} \le 1$$
, for $x \ge A$.

Therefore

$$0 \le x^{s-1}e^{-x} \le e^{-12x}, \text{ for } x \ge A.$$

By the comparison test, the integral $\int_0^\infty x^{s-1} e^{-x} dx$ converges to a finite number which we denote by $\Gamma(s)$, i.e.

$$\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx, s \ge 1$$

If 0 < s < 1 then the function $f(x) = x^{s-1}e^{-x}$ is unbounded near 0. Since

$$0 \le x^{s-1}e^{-x} \le 1x^{1-s}, \ 0 < x \le 1$$

and $\int_0^1 dx x^{1-s}$ converges for 0 < s < 1 we have, by the comparison test, that $\int_0^1 x^{s-1} e^{-x} dx$ converges.

If 0 < s < 1 and $x \ge 1$ then $0 \le x^{s-1}e^{-x} \le e^{-x}$ and since $\int_1^{\infty} e^{-x} dx$ converges, by the comparison test we conclude that $\int_1^{\infty} x^{s-1}e^{-x} dx$ converges. Therefore, we have that $\int_0^{\infty} x^{s-1}e^{-x} dx$ converges for any s > 0 to a finite number which is denoted by $\Gamma(s)$ and it is called the **Gamma function**, i.e.

$$\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx, \quad s > 0.$$

If s > 1, then by integrating by parts we obtain

$$\Gamma(s) = \int_0^\infty x^{s-1} d(-e^{-x}) = -x^{s-1} e^{-x} |_0^\infty + (s-1) \int_0^\infty x^{s-2} e^{-x} dx$$

Thus, if s > n by integrating by parts repeatedly we obtain

$$\Gamma(s) = (s-1)(s-2)\cdots(s-n)\Gamma(s-n)$$

In particular we obtain $\Gamma(n+1) = n(n-1) \cdot 1 \cdot \Gamma(1) = n!$ since $\Gamma(1) = 1$.

Example. Since $e^{-x^2} \le e^{-x}$ for x > 1 the integral $\int_0^\infty e^{-x^2} dx$ converges. It can be shown that

$$\int_0^\infty e^{-x^2} dx = 12\sqrt{\pi}.$$

(See p. 371, no. 54.)

Theorem 4. (Limit Comparison Test) Suppose $f(x) \ge 0$ and g(x) > 0 and that they are integrable on any interval $[a, b], b \ge a$. If

$$\lim_{x \to \infty} f(x)g(x) = l \neq 0$$

then either both integrals

$$\int_{a}^{\infty} f(x)dx$$
 and $\int_{a}^{\infty} g(x)dx$

converge or they both diverge.

Example. The integral $\int_1^\infty 2x - 1x^5 + x^3 + xdx$ converges since

$$2x - 1x^5 + x^3 + 11x^4 = 2x^5 - x^4x^5 + x^3 + 1 @>> x \to \infty > 2 \neq 0$$

and since $\int_1^\infty 1x^4 dx < \infty$.

Example. The integral

$$\int_{1}^{\infty} 1\sqrt{x^2 + 5x + 8} dx$$

diverges since

$$1\sqrt{x^2 + 5x + 8}1x = x\sqrt{x^2 + 5x + 8} = 1\sqrt{1 + 5x + 8x^2} @>> x \to \infty > 1 \neq 0$$

and $\int_{1}^{\infty} 1x dx = \infty$.

Proof of Theorem 4. Since $\lim_{x\to\infty} f(x)g(x) = l > 0$, by the definition of the limit for $\epsilon = l2$ there exists $A = A(\epsilon)$ such that

$$x \ge A \implies |f(x)g(x) - l| < l2.$$

The last relation is written as

$$-l2 < f(x)g(x) - l < l2, \ x \ge A$$

or

$$l2 < f(x)g(x) < 3l2, \ x \ge A$$

or

$$l2g(x) < f(x) < 3l2g(x), \ x \ge A$$

By Thoeorem 4 the last relation implies that

$$\int_{a}^{\infty} f(x)dx \int_{a}^{\infty} g(x)dx$$

are either both converging or both diverging.

Example. None of the convergence tests we discussed above can be used to show that

$$\int_{1}^{\infty} \sin x x dx$$

converges. This integral converges because of two reasons:

i) For any $b \ge 1$, $|\int_1^b \sin x dx| \le 2$.

ii) The function g(x) = 1x is decreasing on any interval $[1, b], b \ge 1$.

The convergence of the above integral follows from:

<u>Theorem 5</u> (Dirichlet's Test) If i) f is continuous on $[a, \infty)$ and there is M such that

$$\left|\int_{a}^{b} f(x)dx\right| \le M, \ for anyb \ge a$$

and ii) g is a decreasing-continuously differentiable function on $[a, \infty)$ with $g(x) \to 0$ as $x \to \infty$, then

$$\int_{a}^{\infty} f(x)g(x)dx$$

converges.

<u>Remark.</u> The condition that g is continuously differentiable can be dropped. To prove Theorem 5, we need the version of the <u>Second Mean Value Theorem for Integrals.</u> Let f(x) be continuous on [a, b] and g(x) be decreasing and continuously differentiable on [a, b]. Then there exists $\xi \in [a, b]$ such that

$$\int_a^b f(x)g(x)dx = g(a)\int_a^{\xi} f(x)dx + g(b)\int_{\xi}^b f(x)dx.$$

Proof. Let

$$F(x) = \int_{a}^{x} f(t)dt.$$

Then by the Fundamental Theorem of Calculus, we have F'(x) = f(x). Integrating by parts, we obtain

$$\int_{a}^{b} f(x)g(x)dx = \int_{a}^{b} g(x)d(F(x)) = g(x)F(x)|_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

Since $-g'(x) \ge 0$ on [a, b] by the Mean Value Theorem for integrals we obtain that there is $\xi \in [a, b]$ such that

$$\int_{a}^{b} F(x)(-g'(x)]dx = F(\xi) \int_{a}^{b} (-g'(x))dx.$$

Therefore

$$\int_{a}^{b} f(x)g(x)dx = g(b)F(b) - g(a)F(a) - F(\xi)\int_{a}^{b} g'(x)dx$$

Proof of Theorem 5. Let $d \ge c \ge a$. By the last result there exists $\xi \in [c, d]$ such that

$$\int_{c}^{d} f(x)g(x)dx = g(c)\int_{c}^{\xi} f(x)dx + g(d)\int_{\xi}^{d} f(x)dx$$

since

$$|\int_{c}^{\xi} f(x)dx| = |\int_{a}^{\xi} f(x)dx - \int_{a}^{c} f(x)dx| \le |\int_{a}^{\xi} f(x)dx| + |\int_{a}^{\xi} f(x)|dx \le 2M.$$

and similarly

$$|\int_{\xi}^{d} f(x)dx| \le 2M$$

we have that

$$|\int_{c}^{d} f(x)g(x)dx| \le g(c)2M + g(d)2M = 4Mg(c)@>> c \to \infty > 0$$

Therefore, by the Cauchy criterion $\int_a^{\infty} f(x)g(x)dx$ converges.

Example. If p > 0 then the integral

$$\int_{1}^{\infty} \sin x x^{p} dx$$

converges since, if we let $f(x) = \sin x$ and $g(x) = 1x^p$, then f and g satisfy the assumptions of Theorem 5. In fact, for p > 1 it follows by the Comparison Test since

$$|\sin xx^p| \le 1x^p \text{ and } \int_1^\infty 1x^p dx < \infty.$$

Also, the integral $\int_0^\infty \sin xx dx$ converges since for $x \ge 1$ we can use the Dirichlet's test and since $\sin xx$ is continuous on [0, 1]. It can be shown (see p. 372, no. 55) that

$$\int_0^\infty \sin x x dx = \pi 2.$$

 $\underline{\mathbf{Remark}}$ We remark here that

$$\int_0^\infty |\sin x| x dx = \infty.$$

In fact, for any $k = 2, 3, 4, \cdots$

$$\int_0^\infty |\sin x| x dx \ge \int_\pi 2\pi |\sin x| x dx + \int_{2\pi}^{3\pi} |\sin x| x dx + \dots + \int_{(k-1)\pi}^{k\pi} |\sin x| x dx$$

Since

$$1j > \int_{j}^{j+1} 1x dx$$

We have

$$\int_0^\infty |\sin x| x \ge 2\pi [\int_2^3 1x dx + \int_3^4 1x dx + \dots + \int_k^{k+1} 1x dx] \ge 2\pi \int_2^{k+1} 1x dx.$$

Thus

$$\int_0^\infty |\sin x| x \ge 2\pi \int_2^\infty 1x dx = \infty.$$

By the comparison test we have seen that if $\int_a^{\infty} |f(x)| dx$ converges, then so does the integral $\int f(x) dx$.

The last remark shows that the converse is not true. If $\int_a^{\infty} |f(x)| dx$ converges, then we say that the improper integral of f is <u>absolutely convergent</u>.

Exercises.

- 1. Show that $\int_0^\infty \sin(x^2) dx$ is convergent. (Hint: Let the substitution $t = x^2$.)
- 2. Show that the integral $\int_{-1}^{\infty} (1-x^2)^{-14} dx$ is convergent.
- 3. Compute the integral $\int_1^\infty x^3 + x^2 + 1x^6 + x^3 dx$.