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Improper Integrals

Assume that f : [a,∞) −→ R is a function such that for any b ∈ (a,∞), f is integrable on
[a, b]. If

lim
b→∞

∫ b

a

f(x)dx.

exists and is finite, then we say that the improper integral of f on (a,∞) converges and
we write ∫ ∞

a

f(x)dx = lim
b→∞

∫ b

a

f(x)dx.

Example. Let p > 0. If p 6= 1 then

I(b) =
∫ b

1

1xpdx = x−p+1−p + 1|b1 = 11− p[b1−p − 1]

If p > 1 then I(b) −→ 1p− 1 as b −→∞ and therefore∫ ∞

1

1xpdx = 1p− 1, p > 1.

If 0 < p < 1, then I(b) −→∞ and the improper integral
∫∞
1

1xpdx diverges. If p = 1 then
I(b) = lnx|b1 = lnb −→∞ as b −→∞.
Therefore we have the

Theorem 1 ∫ ∞

1

1xpdx = { 1p− 1if

p ¿ 1

I(b) =
∫ b

0

e−axdx = −1ae−ax|b0 = 1a(1− e−ab) −→ 1a as b −→∞.

Therefore,
∫∞
0

e−axdx converges to 1a if a > 0. It diverges if a < 0.
Similarly, we define ∫ b

−∞
f(x)dx = lim

a→−∞

∫ b

a

f(x)dx

if f is integrable on [a, b] for any a ≤ b and the above limits exist and is finite.
Also, we define ∫ ∞

−∞
f(x)dx = lim

b→∞

∫ b

c

f(x)dx + lim
a→−∞

∫ c

a

f(x)dx

if f is integrable on any interval [a, b] and both limits above exist and are finite.
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If a function f is unbounded and on (a,b] it is integrable on [a + ε, b] for any ε > 0 and
limε→0

∫ b

a+ε
f(x)dx exists and is finite, then we say that the improper integral of f over

(a, b] converges and we write

∫ b

a

f(x)dx = lim
ε→0

∫ b

a+ε

f(x)dx.

Example. Let p > 0. We have

I(ε) =
∫ 1

ε

1xpdx = { 11− p[a− ε1−p]if p 6= 1

If 0 < ε < 1 then I(ε) −→ 11− p as ε −→ 0 and if 1 ≤ p then I(ε) −→∞ as ε −→ 0.

Therefore, we have

Theorem 2. ∫ 1

0

1xpdx = { 11− pif

0 ¡ p ¡ 1
If a function f is integrable on [a, b − ε] for any ε > 0 and unbounded on [a, b), then we
define ∫ a

b

f(x)dx = lim
ε−→0

∫ b−ε

a

f(x)dx

if the above limit exists and is finite.

Finally, we define ∫ b

a

f(x)dx = lim
ε−→0

∫ c

a+ε

f(x)dx + lim
ε−→0

∫ b−ε

c

f(x)dx

if f is integrable on any interval [a + ε, b − ε] but unbounded on (a, c] and [c, b), cε(a, b),
and if both limits above exist and are finite.

Example. The integral ∫ 1

−1

1(1− x2)14

is improper since
f(x) = 1(1− x2)14

is unbounded on both intervals [0, 1) and (−1, 0]. We will show later that it converges.
Convergence Tests for Improper Integrals
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Here we will discuss only infinite integrals of the form∫ ∞

a

f(x)dx

where the function f is integrable over any interval [a, b], b ≥ a. The tests for the integrals
of the form

∫ a

−∞ f(x)dx are reduced to the above case by the substitution t = −x. Also,

the substitution t = 1x− a or t = 1x− b reduces the improper integrals
∫ b

a
f(x)dx to the

above case.

Theorem 1 (Cauchy criterion). Suppose that the function f is integrable over any
interval [0, b), b ≤ a. Then the improper integral

∫∞
a

f(x)dx converges if and only if for
every ε > 0 there exists N = N(ε) such that

d ≥ c ≥ N =⇒ |
∫ d

c

f(x)dx| < ε.

*
Remark. In other words, the Cauchy criterion says that

∫∞
a

f(x)dx converges if and
only if ∫ d

c

f(x)dx −→ 0 as c −→∞.

Example. The infinite integral
∫∞
1

dxx2dx converges since

|
∫ d

c

dxx2| = 1d− 1c ≤ 2c −→ 0 as c −→∞.

Example. The integral
∫∞
1

dxx does not converge since for c ≥ 1 we have

|
∫ c2

c

dxx| = ln c2 − ln c = ln c −→∞ as c −→∞.

Proof. Supposefirstthattheintegralconverges, i.e.I(b) =
∫ b

a
f(x)dx −→ I as b −→∞.

Then by the definition of the limit for any ε > 0 there exists N = N(ε) ≥ a such that

b ≥ N ⇒ |I(b)− I| < ε2

Therefore, if d ≥ c ≥ N then

|
∫ d

c

f(x)dx| = |I(d)− I(c)| ≤ |I(d)− I|+ |I(c)− I| < ε2 + ε2 = ε

Conversely, we assume that (*) holds. The sequence of numbers I(k) is a Cauchy sequence.
Such sequences always converge. This is a fact following from the construction of the real
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numbers. Therefore, there exists a real number I such that I(k) −→ I as k → ∞. Thus
for any b ≥ a we have

I(b) = [I(b)− I(k)] + I(k) −→ I if k ≥ b −→∞

since I(k) −→ I and I(k)− I(b) −→ 0 by (*).

Next we have

Theorem 2. Assume that f(x) ≥ 0 for x ≥ a and that it is integrable on [a, b] for any
b ≥ a. Then

∫∞
a

f(x)dx converges if and only if there exists M such that

∫ b

a

f(x)dx ≤ M forany b ≥ a.

Proof. Since f(x) ≥ 0 the function

I(b) =
∫ b

a

f(x)dx, a ≥ b

is increasing. Therefore, I(b) converges as b −→∞ if and only if I(b) is bounded.

Example. The integral
∫∞
1

1x2 + x + 1dx converges since

∫ b

1

1x2 + x + 1dx ≤
∫ b

1

1x2dx = 1− 1b ≤ 1 forany b ≥ 1.

Theorem 3. (Comparison Test). Suppose that f(x), g(x)and h(x) are integrable on [a, b]
for any b ≥ a and that 0 ≤ g(x) ≤ 1|f(x)| ≤ h(x) for any x ≥ A, where A is some number
with A ≥ a. We have the following:

a) If
∫∞

a
h(x)dx converges, then

∫∞
a

f(x)dx converges.

b) If
∫∞

a
g(x)dx = ∞ and f(x) ≥ 0 then

∫∞
a

f(x)dx = ∞.

Example. The integral
∫∞
1

sinxxdx converges since for x ≥ 1 we have |sinxx2| ≤ 1x2

and
∫∞
1

1x2dx < ∞.

Example. The integral
∫∞
1

√
x2x + 1dx diverges since for x ≥ 1

√
x2x + 1 ≥

√
x2x + x = 131

√
x

and
∫∞
1

131
√

x diverges.
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Proof. We will use the Cauchy criterion for g(x). Let ε > 0. Since
∫∞

a
g(x)dx converge,

there exists N = N(ε) ≥ a such that

d ≥ c ≥ N =⇒
∫ d

c

g(x)dx < ε.

Then for d ≥ c ≥ N we have

|
∫ d

c

f(x)dx| ≤
∫ d

c

|f(x)|dx ≤
∫ d

c

g(x)dx < ε.

Therefore
∫∞

a
f(x)dx converges.

Example. (Gamma Function) Let s > 0 and

f(x) = xs−1e−x, x ∈ (0,∞).

For s ≥ 1 the function f(x) is bounded on any interval [0, a], a > 0. Since

xs−1e−xe−12 = xs−1e−12x −→ 0 as x →∞

we have that there is A > 0 such that

xs−1e−xe−12x ≤ 1, for x ≥ A.

Therefore
0 ≤ xs−1e−x ≤ e−12x, for x ≥ A.

By the comparison test, the integral
∫∞
0

xs−1e−xdx converges to a finite number which we
denote by Γ(s), i.e.

Γ(s) =
∫ ∞

0

xs−1e−xdx, s ≥ 1.

If 0 < s < 1 then the function f(x) = xs−1e−x is unbounded near 0. Since

0 ≤ xs−1e−x ≤ 1x1−s, 0 < x ≤ 1

and
∫ 1

0
dxx1−s converges for 0 < s < 1 we have, by the comparison test, that

∫ 1

0
xs−1e−xdx

converges.

If 0 < s < 1 and x ≥ 1 then 0 ≤ xs−1e−x ≤ e−x and since
∫∞
1

e−xdx converges, by
the comparison test we conclude that

∫∞
1

xs−1e−xdx converges. Therefore, we have that∫∞
0

xs−1e−xdx converges for any s > 0 to a finite number which is denoted by Γ(s) and it
is called the Gamma function, i.e.

Γ(s) =
∫ ∞

0

xs−1e−xdx, s > 0.
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If s > 1, then by integrating by parts we obtain

Γ(s) =
∫ ∞

0

xs−1d(−e−x) = −xs−1e−x|∞0 + (s− 1)
∫ ∞

0

xs−2e−xdx

Thus, if s > n by integrating by parts repeatedly we obtain

Γ(s) = (s− 1)(s− 2) · · · (s− n)Γ(s− n)

In particular we obtain Γ(n + 1) = n(n− 1) · 1 · Γ(1) = n! since Γ(1) = 1.

Example. Since e−x2 ≤ e−x for x > 1 the integral
∫∞
0

e−x2
dx converges. It can be shown

that ∫ ∞

0

e−x2
dx = 12

√
π.

(See p. 371, no. 54.)

Theorem 4. (Limit Comparison Test) Suppose f(x) ≥ 0 and g(x) > 0 and that they
are integrable on any interval [a, b], b ≥ a. If

lim
x→∞

f(x)g(x) = l 6= 0

then either both integrals ∫ ∞

a

f(x)dx and

∫ ∞

a

g(x)dx

converge or they both diverge.

Example. The integral
∫∞
1

2x− 1x5 + x3 + xdx converges since

2x− 1x5 + x3 + 11x4 = 2x5 − x4x5 + x3 + 1 @ >> x →∞ > 2 6= 0

and since
∫∞
1

1x4dx < ∞.

Example. The integral ∫ ∞

1

1
√

x2 + 5x + 8dx

diverges since

1
√

x2 + 5x + 81x = x
√

x2 + 5x + 8 = 1
√

1 + 5x + 8x2@ >> x →∞ >1 6= 0

and
∫∞
1

1xdx = ∞.
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Proof of Theorem 4. Since lim
x→∞

f(x)g(x) = l > 0, by the definition of the limit for

ε = l2 there exists A = A(ε) such that

x ≥ A =⇒ |f(x)g(x)− l| < l2.

The last relation is written as

−l2 < f(x)g(x)− l < l2, x ≥ A

or

l2 < f(x)g(x) < 3l2, x ≥ A

or

l2g(x) < f(x) < 3l2g(x), x ≥ A

By Thoeorem 4 the last relation implies that∫ ∞

a

f(x)dx

∫ ∞

a

g(x)dx

are either both converging or both diverging.

Example. None of the convergence tests we discussed above can be used to show that∫ ∞

1

sinxxdx

converges. This integral converges because of two reasons:

i) For any b ≥ 1, |
∫ b

1
sinxdx| ≤ 2.

ii) The function g(x) = 1x is decreasing on any interval [1, b], b ≥ 1.

The convergence of the above integral follows from:

Theorem 5 (Dirichlet’s Test) If
i) f is continuous on [a,∞) and there is M such that

|
∫ b

a

f(x)dx| ≤ M, foranyb ≥ a

and ii) g is a decreasing-continuously differentiable function on [a,∞) with g(x) → 0 as x →
∞, then
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∫ ∞

a

f(x)g(x)dx

converges.

Remark. The condition that g is continuously differentiable can be dropped.To prove The-
orem 5, we need the version of the Second Mean Value Theorem for Integrals. Let
f(x) be continuous on [a, b] and g(x) be decreasing and continuously differentiable on [a, b].
Then there exists ξ ∈ [a, b] such that∫ b

a

f(x)g(x)dx = g(a)
∫ ξ

a

f(x)dx + g(b)
∫ b

ξ

f(x)dx.

Proof. Let

F (x) =
∫ x

a

f(t)dt.

Then by the Fundamental Theorem of Calculus, we have F ′(x) = f(x). Integrating by
parts, we obtain∫ b

a

f(x)g(x)dx =
∫ b

a

g(x)d(F (x)) = g(x)F (x)|ba −
∫ b

a

F (x)g′(x)dx.

Since −g′(x) ≥ 0 on [a, b] by the Mean Value Theorem for integrals we obtain that there
is ξ ∈ [a, b] such that ∫ b

a

F (x)(−g′(x)]dx = F (ξ)
∫ b

a

(−g′(x))dx.

Therefore ∫ b

a

f(x)g(x)dx = g(b)F (b)− g(a)F (a)− F (ξ)
∫ b

a

g′(x)dx

Proof of Theorem 5. Let d ≥ c ≥ a. By the last result there exists ξ ∈ [c, d] such that∫ d

c

f(x)g(x)dx = g(c)
∫ ξ

c

f(x)dx + g(d)
∫ d

ξ

f(x)dx

since

|
∫ ξ

c

f(x)dx| = |
∫ ξ

a

f(x)dx−
∫ c

a

f(x)dx| ≤ |
∫ ξ

a

f(x)dx|+ |
∫ ξ

a

f(x)|dx ≤ 2M.

and similarly

|
∫ d

ξ

f(x)dx| ≤ 2M
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we have that

|
∫ d

c

f(x)g(x)dx| ≤ g(c)2M + g(d)2M = 4Mg(c)@ >> c →∞ > 0

Therefore, by the Cauchy criterion
∫∞

a
f(x)g(x)dx converges.

Example. If p > 0 then the integral ∫ ∞

1

sinxxpdx

converges since, if we let f(x) = sin x and g(x) = 1xp, then f and g satisfy the assumptions
of Theorem 5. In fact, for p > 1 it follows by the Comparison Test since

|sinxxp| ≤ 1xp and

∫ ∞

1

1xpdx < ∞.

Also, the integral
∫∞
0

sinxxdx converges since for x ≥ 1 we can use the Dirichlet’s test
and since sin xx is continuous on [0, 1]. It can be shown (see p. 372, no. 55) that∫ ∞

0

sinxxdx = π2.

Remark We remark here that ∫ ∞

0

| sinx|xdx = ∞.

In fact, for any k = 2, 3, 4, · · ·

∫ ∞

0

| sinx|xdx ≥
∫

π

2π| sinx|xdx +
∫ 3π

2π

| sinx|xdx + · · ·+
∫ kπ

(k−1)π

|sinx|xdx

Since

1j >

∫ j+1

j

1xdx

We have∫ ∞

0

| sinx|x ≥ 2π[
∫ 3

2

1xdx +
∫ 4

3

1xdx + · · ·+
∫ k+1

k

1xdx] ≥ 2π

∫ k+1

2

1xdx.

Thus ∫ ∞

0

| sinx|x ≥ 2π

∫ ∞

2

1xdx = ∞.
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By the comparison test we have seen that if
∫∞

a
|f(x)|dx converges, then so does the

integral
∫

f(x)dx.

The last remark shows that the converse is not true. If
∫∞

a
|f(x)|dx converges, then we

say that the improper integral of f is absolutely convergent.

Exercises.

1. Show that
∫∞
0

sin(x2)dx is convergent. (Hint: Let the substitution t = x2.)

2. Show that the integral
∫∞
−1

(1− x2)−14dx is convergent.

3. Compute the integral
∫∞
1

x3 + x2 + 1x6 + x3dx.
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