Math 166: Honors Calculus IINameExam IMar. 2, 1995

Name:_____

There are 6 questions with a total of 25 parts. Each part is worth 5 points for a total of 125 points.

1. Define each of the following functions precisely, including their domains.

a) $\log(x)$

- b) The natural exponential function.
- c) a^x for a > 0.

d) $\sinh(x)$

e) $\arctan(x)$

f) $T_n f(x;a)$

- 2. State each of the following theorems precisely.
 - a) The First Fundamental Theorem of Calculus.

b) The Theorem on Derivatives of Inverse Functions.

c) Taylor's Theorem with Integral Remainder.

3. Compute the following derivatives

a)
$$\frac{d}{dx}\left(\int_{x^4}^{4^x}\sqrt{1+t^4}\,dt\right).$$

b)
$$\frac{d}{dx}\left(\sqrt{x}^{\sqrt{x}}\right)$$
.

c)
$$\frac{d}{dx} \operatorname{arcsec}(x)$$
 (Hint: use 2b)

4. Compute the following integrals.

a)
$$\int \frac{\sin x}{3 + \cos x} \, dx$$

b)
$$\int \cos^4(x) \, dx$$

c)
$$\int x^2 e^x dx$$

d) $\int \log x \, dx$

e)
$$\int \frac{1}{\sqrt{x-x^2}} dx$$

f)
$$\int \frac{1}{(x-2)(x-3)} dx$$

5. a) Give the partial fraction decomposition of $\frac{3x^3 + 4x^2 + 2x + 1}{x^2(x^2 + 1)}$.

b) Convert to an integral involving trignometric functions (do not integrate): $\int \frac{x}{\sqrt{x^2 - 4x + 20}} \, dx.$

c) Convert to an integral involving rational functions (do not integrate): $\int \frac{\sin x}{2 + \sin x} dx$.

6. In a)–c) find the Taylor polynomials.

a)
$$T_{n+1}\left(\frac{x^2}{(1-x)^2}\right)$$
 (Hint: $\frac{d}{dx}\frac{1}{1-x} = \frac{1}{(1-x)^2}$).

b)
$$T_n\left(\log\frac{(1-x)^3}{(1+x)^5}\right)$$

c) $T_4(e^x \cos x)$

d) Let $f(x) = \cos(x)$. Find n such that $|E_n f(x; 0)| \le 10^{-5}$ for all $x \in [0, \pi/2]$.