University of Notre Dame
 Math. 166, Final Examination (May 8,1997)

Instructor: Hong-Ming Yin, Duration: 2 hours.

[30] 1. The following statements may be true or false. If it is true, give a short proof, if not, give a counterexample or give a true statement.
(a) Let $f(x)$ and $g(x)$ be defined on $[0, \infty)$ and

$$
\lim _{x \rightarrow+\infty} f(x)=+\infty, \lim _{x \rightarrow+\infty} g(x)=+\infty ;
$$

Then

$$
\lim _{x \rightarrow+\infty}[f(x)-g(x)]=0
$$

(b) Let z be a complex number and i be the imaginery unit. Then

$$
e^{z+2 n \pi i}=e^{z} \quad \text { for all integer } n
$$

(c) Let $\left\{a_{n}\right\}$ be a non-negative and monotone decreasing sequence. Moreover,

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

then the series $\sum_{n=1}^{\infty} \frac{a_{n}}{\sqrt{n}}$ converges.
(d) For all $x \in(-1, \infty)$,

$$
\log (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} x^{n}
$$

(e) The function sequence $\left\{f_{n}(x)\right\}=\left\{\log \left(1+x^{n}\right)\right\}$ converges uniformly on $[0,1]$.
(f) The following identity holds for all x :

$$
\arcsin x+\arccos x=1
$$

[20] 2.(a) Find the values of a and b such that

$$
\int_{2}^{+\infty}\left[\frac{2 x^{2}+b x+a}{x(2 x+a)}-1\right] d x=1
$$

(b) Prove the improper integral

$$
\int_{1}^{\infty} \frac{x^{s}}{e^{x}} d x
$$

is convergent for any fixed $s \in(-\infty,+\infty)$.
[20] 3. For each of the following power series, determine the set of all real x for which the series converges.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{\log (1+n)}} x^{n} ;$
(b) $\quad \sum_{n=1}^{\infty} \frac{n!}{n^{n}} x^{n}$
[20] 4. Find the Taylor's series centered at 0 of the following functions and indicate the radius of convergence for the series:
(a) $f(x)=\sin 2 x$
(b) $g(x)=\frac{1}{2-x-x^{2}}$
[10] 5. Let $f(x)=e^{-\frac{1}{x^{2}}}$ if $x \neq 0$ and $f(0)=0$.
(a) Prove that for every integer $m>0$,

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x^{m}}=0
$$

(b) Prove $f^{(n)}(0)=0$ for all $n \geq 1$.

