University of Notre Dame

Math. 166, Calculus for Honor Math., Spring of 1997.

Instructor: Dr. Hong-Ming Yin.

Text Book:

Calculus, vol. 1 (second edition) by Tomm. Apostol.

Final Grade

Final Grade will be based on the following percentage:
Homework: 15%. There will be about 10 homework assignments.
Quiz 1: 5\%, on February 6, from 11:00-11:20 am at CCBC 326.
Test 1: 20%, on March 6, from 11:00-12:00 a.m., at CCMB 326
Test 2: 20%, on April 17, from 11:00-12:00 a.m., at CCMB 326
Final Exam.: 40\%, May 8 from 1:45 to 3:45 pm, at DBRT 207.

Sections Covered: Chapter 7 (all sections), Chapter 9(section 9.1 to 9.8), Chapter 10 (all sections except for 10.21), Chapter 11 (Section 11.1-11.10).

Daily Progress:

L1: Review on Integration Techniques (Chapter 5) (Jan.15)
L2: Logarithm Functions (Sect. 6.1-6.5), (Jan. 16)
L3: Differentiation and Integration involving logarithm (Sect. 6.6-6.8) (Jan. 20).

L4: The exponential Function (sect. 6.12-6.14) (Jan. 22).
L5: Differentiation and Integration involving exponential(Sect. 6.15-6.17) (Jan. 22)
***** Review (Jan. 24) ${ }^{* * * * * *}$
L6: Hyperbolic functions and some inverse trigonometric functions (Sect. 6.18-6.21) (Jan. 27).

L7: Diff. and Integration involving Inverse trigonometric functions (Sect.
6.21) (Jan. 29)

L8: Integration by partial fractions (sect. 6.23, part I) (Jan. 31).
L9: Integration by partial fractions (part II) (Feb. 3).
L10: Integration of rational trigonometric functions (sect. 6.24) (Feb.5).
L11: Summary on Integration Techniques (Feb. 6).
L12: The Taylor polynomials (sect.7.1-7.4, Feb. 10).
L13: Taylor's formula with remainder (sect. 7.5-7.6) (Feb. 12).
L14: Taylor's estimates of Taylor's remainder (sect. 7.6, 7.9) (Feb. 14).
L15: The little o-notation (sect. 7.9) Feb. 17).
L16: Applications to indeterminate form (sect.7.10) (Feb.19).
L17: L'Hopital's Rule (sect. 7.12) (Feb. 21).
L18: " $\varepsilon-M$ " definition of limit at infinity (sect.7.14) (Feb. 24).
L19: Other types of indeterminate forms (sect. 7.15-7.16) (Feb. 26).
L20: Summary on finding limits of indeterminate forms (Feb. 28).
L21: Compound Interests, exponential growth and decays (March 3).
L22: Review for test 1 (March 5).
*****Solution to Test 1 ******* (March 7).
L23: Complex numbers (sect. 9.1-9.5) (March 17).
L24: Complex functions (sect. 9.7-9.9) (March 19).
L25: limits of sequences (sect. 10.1-10.2) (March 21).
L26: Monotone sequences (sect. 10.3) (March 24).
L27: Infinite series (sect. 10.5-10.8) (March 26).
L28: Some special series (sect. 10.7-10.8) (March 27).
L29: Comparison Tests for convergence (sect.10.11-10.12) (April 2).
L30: Integral test and examples (sect.10.13) (April 3),
L31: The Root Test and the Ratio Test (sect. 10.15) (April 7).
L32: Summary on various convergence tests (April 9).
L33: Alternating series Test (sect. 10.17) (April 11).
L34: Conditional and Absolute convergence (sect. 10.18) (April 14).
L35: Review for Test 2 (Chapters 9 and 10) (April 16).
***** Solution to Test $2^{* * * * * *}$ (April 18).
L36: Improper Integrals (sect. 10.23) (April 21)
L37: Improper Integrals (Part II) (April 23).
L38: Pointwise convergence and uniform Convergence (sect. 11.1-11.2) (April 25)

L39: Convergence of function series and Power series (11.3-11.6) (April 28)
L40: Power series and Taylor's series (11.8-11.10) (April 30).

Comments on the text book:

(1) The textbook is very good and could be used in future.
(2) As many students may become graders, I added an additional section on compounded interest rate and exponential growth-decays.
(3) Chapter 8 (Differential Equations) is skipped. The students may be advised to take Differential Equations in future.
(4) It is a good idea to make a copy of each lecture note in the library.

