There are 6 questions, each with several parts, worth a total of 110 points. Be sure to show all your work and justify all steps.

- 1. (30 pts) Define each of the following functions precisely, including their domains.
 - a) The natural logarithm function, $\log(x)$.
 - b) The natural exponential function, $\exp(x)$.

c) a^x for a > 0.

d) tanh(x)

e) $\arccos(x)$

f) $T_n f(x;a)$

- 2. (10 pts) State each of the following theorems precisely.
 - a) The First Fundamental Theorem of Calculus.

b) The Theorem on Derivatives of Inverse Functions.

3. (15 pts)

a) Compute
$$\frac{d}{dx} \int_{-\log(x)}^{\log(x)} \sin(e^t) dt$$

b) Compute
$$\frac{d}{dx}\cos(x)^{\sin(x)}$$
.

c) Prove
$$\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1-x^2}}$$
.

4. (30 pts) Compute the following integrals.

a)
$$\int \frac{x-1}{\sqrt{x-2}} dx$$

b)
$$\int x^2 e^x dx$$

c) $\int \log x \, dx$

d)
$$\int \frac{1}{(x^2+1)^2} dx$$

e)
$$\int \frac{1}{\sqrt{1+x-x^2}} dx$$

f)
$$\int \frac{1}{x^2 - 5x + 7} \, dx$$

- 5. (15 pts)
 - a) Give the partial fraction decomposition of $\frac{4x^3 x^2 4x + 5}{(x-1)^2(x^2+1)}$ (Solve for the constants).

b) Use a trignometric substitution to integrate $\int \frac{x}{\sqrt{x^2 - 6x}} dx$.

c) Convert to an integral involving rational functions (do not integrate): $\int \frac{\sin x}{2 + \cos x} dx$.

6. (10 pts) Find the Taylor polynomials.

a)
$$T_{4n+1}\left(\frac{x}{1+x^4}\right)$$

b) $T_{2n}(\cos^2(x))$ [Hint: use a trig identity first.]