Math 166: Honors Calculus II

Name:
Exam II Apr. 8, 1999
There are 6 questions, each with several parts, worth a total of 110 points. Be sure to show all your work and justify all steps.

1. (20 pts) Define the following
a) $\lim _{x \rightarrow a} f(x)=\infty$
b) $\lim _{n \rightarrow \infty} a_{n}=L$
c) $f(x)=o(g(x))$ as $x \rightarrow a$.
d) $\sum_{n=1}^{\infty} a_{n}$ converges.
2. (20 pts) State the following theorems precisely.
a) Taylor's Theorem with Integral Remainder.
b) State L'Hôpital's Theorem.
c) The Limit Comparison Test.
d) The Integral Test.
3. (20 pts)
a) Express $x^{3} \log (1+x)$ in o-notation; include at least three non-zero terms.
b) Simplify $\frac{1+x+x^{2}+o\left(x^{3}\right)}{1-x^{2}+x^{3}+o\left(x^{3}\right)}$ into the form $a_{0}+a_{1} x+a_{2} x^{2}+o\left(x^{2}\right)$.
c) Let $f(x)=\sin (x)$ and consider $f(x)=T_{n} f(x ; 0)+E_{n} f(x)$. Find n such that $\left|E_{n} f(x)\right|<10^{-3}$ for all $x \in[-1,1]$.
d) Prove that if $|r|<1$ then $\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}$.
4. (20 pts) Compute the following limits. Be sure to justify each step.
a) $\lim _{x \rightarrow 0}(1+h(x))^{1 / h(x)}$ where $h(x)$ is a non-constant differentiable function in a neighborhood of 0 and $h(0)=0$.
b) $\lim _{x \rightarrow 0} \frac{e^{x^{2}}-\cos (x)}{x^{2}}$
c) $\lim _{x \rightarrow \infty} \sqrt{2 x+x^{2}}-\sqrt{x+x^{2}}$
d) $\lim _{n \rightarrow \infty} \frac{\left(n+(-1)^{n}\right)(n+1)}{3 n^{2}} \quad(n \in)$
5. (15 pts) Compute the sums of the following series.
a) $\sum_{n=0}^{\infty} \frac{a^{n}+(-1)^{n}}{b^{2 n}}$ where $0<a<b$
b) $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}(n+1)^{2}}$
c) $\sum_{n=0}^{\infty} \frac{n}{n+1} x^{n}$ for $|x|<1$
(You may use integration or differentiation term by term.)
6. (15 pts) Test the following series for convergence. Justify your answers.
a) $\sum_{n=0}^{\infty} \frac{1}{n!}$
b) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n^{2}}$
c) $\sum_{n=2}^{\infty} \frac{1}{n \log (n)}$
