Math 166: Honors Calculus II

Exam II Apr. 8, 1999

There are 6 questions, each with several parts, worth a total of 110 points. Be sure to show all your work and justify all steps.

1. (20 pts) Define the following

a)
$$\lim_{x \to a} f(x) = \infty$$

b)
$$\lim_{n\to\infty} a_n = L$$

c)
$$f(x) = o(g(x))$$
 as $x \to a$.

d)
$$\sum_{n=1}^{\infty} a_n$$
 converges.

2.	. (20 pts) State the following theorems precisely.	
	a)	Taylor's Theorem with Integral Remainder.
	b)	State L'Hôpital's Theorem.
	,	
	c)	The Limit Comparison Test.
	<i>\(\)</i>	The Emily Companion Tool.

d) The Integral Test.

- 3. (20 pts)
 - a) Express $x^3 \log(1+x)$ in o-notation; include at least three non-zero terms.

b) Simplify $\frac{1+x+x^2+o(x^3)}{1-x^2+x^3+o(x^3)}$ into the form $a_0+a_1x+a_2x^2+o(x^2)$.

c) Let $f(x) = \sin(x)$ and consider $f(x) = T_n f(x; 0) + E_n f(x)$. Find n such that $|E_n f(x)| < 10^{-3}$ for all $x \in [-1, 1]$.

d) Prove that if
$$|r| < 1$$
 then $\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$.

- 4. (20 pts) Compute the following limits. Be sure to justify each step.
 - a) $\lim_{x\to 0} (1+h(x))^{1/h(x)}$ where h(x) is a non-constant differentiable function in a neighborhood of 0 and h(0)=0.

b)
$$\lim_{x \to 0} \frac{e^{x^2} - \cos(x)}{x^2}$$

c)
$$\lim_{x \to \infty} \sqrt{2x + x^2} - \sqrt{x + x^2}$$

d)
$$\lim_{n \to \infty} \frac{(n + (-1)^n)(n+1)}{3n^2}$$
 $(n \in)$

5. (15 pts) Compute the sums of the following series.

a)
$$\sum_{n=0}^{\infty} \frac{a^n + (-1)^n}{b^{2n}}$$
 where $0 < a < b$

b)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$$

c)
$$\sum_{n=0}^{\infty} \frac{n}{n+1} x^n$$
 for $|x| < 1$ (You may use integration or differentiation term by term.)

 $6.\ (15\ \mathrm{pts})$ Test the following series for convergence. Justify your answers.

a)
$$\sum_{n=0}^{\infty} \frac{1}{n!}$$

$$b) \sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n^2}$$

c)
$$\sum_{n=2}^{\infty} \frac{1}{n \log(n)}$$