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Problems 1 and 2 are definitions and statements of theroems that can be found in the text.
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3. Int ting the f 1
a) Integrating the formula 5z 5 3

1 1
4 - 53:5 + §x6 + o(z°).

=1+ u+o(u) with u = 2% — 23 + o(23) we get

3log(l41z) =2
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b) Using the rule 7
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1—22 423 4 o(z3)
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and ). Since f(z) = sin(x), the derivatives of f(z) are either 4 sin(x) or =+ cos(z), so | "V (z)| < 1. Thus,

En < n+1
En (@)l < iyl nt 1)
which occurs for n > 6 (6! = 720 and 7! = 5040).

¢) The Lagrange form of the remainder is F, f(z) = FPFD () 2"+ for some ¢ in [—1,1] (between 0

since, by assumption, |z| < 1. Therefore |E,| < 1073 if (n+1)! > 1000
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d) By a familiar algebraic identity, the partial sums are s, = E rk = 1 7 . Since |r|"™ — 0 as
—r —r
k=0
1
n — oo when |r| < 1, the limit of the partial sums is lim s, = 1 .
n— o0 —-r

n 1+h 1
o)l (1 )" = expl g o1 + (o)) /(o) = expltin LR — expltny s =
e. We could also solve this problem assuming only that h(z) is continuous by substituting v = h(z) and
1
u— 0 for x — 0: exp[lir% log(14 h(x))/h(x)] = exp[lin%) log(1+w)/u] = exp[hm ?] = e (use L’Hopital’s

rule, taking derivatives with respect to the variable u!).
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b) Use L'Hopital’s rule twice: lim < (;Ob(x) = lim —< + sin(w) = lim 2+ 4a7)e” +cos(z) _ 3 We
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could also use o-notation: lim et —cos(z) = lim ( @) = ( o) = lim = +o(x) = =
z—0 x2 x—0 xz x~>0 2

. We could also
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5. a)%%-%(é) +(b—2> :1—a/62+1—|—1/b2 (linearity and geometric series).
2n + 1 o 1 1 1 1 .
);migﬁfm:ﬁfnlingomzl(telescoplngsum).
— 7 S 1 1S 1
n: 1— ) n: _ = n+1
C)nz;)n—l—l nz_;)( n+1 Zx Zn+1 1—2 xz;)n—f—lx
1 . 171 1 .
= Zt dt = ——dt = 7+flog(1—x) We could also do the following:
1_'1: T Jo 11—t 1—
o~ 7 PR Tl dp 1
"=z —a" =z t”dt}f —[ —dt}: —[—71 1-— }:
;nﬂx f”dx;onﬂx [/Z Tz ), =1 vo—| — 5 los(l — @)
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7 for integers n > 1, and Z 7 converges (geometric series), the Comparison Test

1 1
6. a) Since — < —
a) Since 1< o=

= 1 1 1 1 1 o /1 1
implies that nZ:O — converges. We could also compare o < m = 1 and nz::l (ﬁ o 1)

converges as a telescoplng sum.

1 1 vV 1/n? 1
b) First we note that nt is asymptotically equal to . lim Y +1/n = lim y/14+—=1. We
2 n3/2 n— oo 1/n3/2 n—oo n
could also compare 5 = \3[ Since E converges (by the Integral Test, for example),
n /2" 3/2

oo
. vn+1
the series E 5 Converges.
n
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¢) Using the substitution u = log(x), du = - dz, we find

n 1 log(n)
/ 7dx:/ — du = log|log(n)| —log |log(2)| — o0 as n — o0
2 .’ﬂlOg(ZL’) log(2) U

Therefore the series Z diverges by the Integral Test.

< nlog(n)




