MATH 166: HONORS CALCULUS II
 EXAM II SOLUTIONS

APRIL 8, 1999

Problems 1 and 2 are definitions and statements of theroems that can be found in the text.
3. a) Integrating the formula $\frac{1}{1+x}=1-x+x^{2}+o\left(x^{3}\right)$, gives $\log (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+o\left(x^{3}\right)$ so $x^{3} \log (1+x)=x^{4}-\frac{1}{2} x^{5}+\frac{1}{3} x^{6}+o\left(x^{6}\right)$.
b) Using the rule $\frac{1}{1-u}=1+u+o(u)$ with $u=x^{2}-x^{3}+o\left(x^{3}\right)$ we get

$$
\begin{aligned}
\frac{1+x+x^{2}+o\left(x^{3}\right)}{1-x^{2}+x^{3}+o\left(x^{3}\right)} & =\left(1+x+x^{2}+o\left(x^{3}\right)\right)\left(1+x^{2}-x^{3}+o\left(x^{3}\right)+o\left(x^{2}-x^{3}+o\left(x^{3}\right)\right)\right. \\
& =\left(1+x+x^{2}+o\left(x^{3}\right)\right)\left(1+x^{2}+o\left(x^{2}\right)\right)=1+x+2 x^{2}+o\left(x^{2}\right)
\end{aligned}
$$

c) The Lagrange form of the remainder is $E_{n} f(x)=\frac{1}{(n+1)!} f^{(n+1)}(c) x^{n+1}$ for some c in $[-1,1]$ (between 0 and x). Since $f(x)=\sin (x)$, the derivatives of $f(x)$ are either $\pm \sin (x)$ or $\pm \cos (x)$, so $\left|f^{(n+1)}(x)\right| \leq 1$. Thus, $\left|E_{n} f(x)\right| \leq \frac{1}{(n+1)!}|x|^{n+1} \leq \frac{1}{(n+1)!}$ since, by assumption, $|x|<1$. Therefore $\left|E_{n}\right|<10^{-3}$ if $(n+1)!>1000$ which occurs for $n \geq 6(6!=720$ and $7!=5040)$.
d) By a familiar algebraic identity, the partial sums are $s_{n}=\sum_{k=0}^{n} r^{k}=\frac{1}{1-r}-\frac{r^{n+1}}{1-r}$. Since $|r|^{n+1} \rightarrow 0$ as $n \rightarrow \infty$ when $|r|<1$, the limit of the partial sums is $\lim _{n \rightarrow \infty} s_{n}=\frac{1}{1-r}$.
4. a) $\lim _{x \rightarrow 0}(1+h(x))^{1 / h(x)}=\exp \left[\lim _{x \rightarrow 0} \log (1+h(x)) / h(x)\right]=\exp \left[\lim _{x \rightarrow 0} \frac{h^{\prime}(x) /(1+h(x))}{h^{\prime}(x)}\right]=\exp \left[\lim _{x \rightarrow 0} \frac{1}{1+h(x)}\right]=$ e. We could also solve this problem assuming only that $h(x)$ is continuous by substituting $u=h(x)$ and $u \rightarrow 0$ for $x \rightarrow 0: \exp \left[\lim _{x \rightarrow 0} \log (1+h(x)) / h(x)\right]=\exp \left[\lim _{u \rightarrow 0} \log (1+u) / u\right]=\exp \left[\lim _{u \rightarrow 0} \frac{1}{1+u}\right]=e$ (use L'Hôpital's rule, taking derivatives with respect to the variable u !).
b) Use L'Hopital's rule twice: $\lim _{x \rightarrow 0} \frac{e^{x^{2}}-\cos (x)}{x^{2}}=\lim _{x \rightarrow 0} \frac{2 x e^{x^{2}}+\sin (x)}{2 x}=\lim _{x \rightarrow 0} \frac{\left(2+4 x^{2}\right) e^{x^{2}}+\cos (x)}{2}=\frac{3}{2}$. We could also use o-notation: $\lim _{x \rightarrow 0} \frac{e^{x^{2}}-\cos (x)}{x^{2}}=\lim _{x \rightarrow 0} \frac{\left(1+x^{2}+o\left(x^{3}\right)\right)-\left(1-\frac{1}{2} x^{2}+o\left(x^{3}\right)\right.}{x^{2}}=\lim _{x \rightarrow 0} \frac{3}{2}+o(x)=\frac{3}{2}$. c) $\lim _{x \rightarrow \infty} \sqrt{2 x+x^{2}}-\sqrt{x+x^{2}}=\lim _{x \rightarrow \infty} \frac{\left(2 x+x^{2}\right)-\left(x+x^{2}\right)}{\sqrt{2 x+x^{2}}+\sqrt{x+x^{2}}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{\frac{2}{x}+1}+\sqrt{\frac{1}{x}+1}}=\frac{1}{2}$. We could also substitute $x=\frac{1}{y}: \lim _{x \rightarrow \infty} \sqrt{2 x+x^{2}}-\sqrt{x+x^{2}}=\lim _{y \rightarrow 0^{+}} \frac{\sqrt{2 y+1}-\sqrt{y+1}}{y}=\lim _{y \rightarrow 0^{+}} \frac{(2 y+1)-(y+1)}{y(\sqrt{2 y+1}+\sqrt{y+1})}=$ $\lim _{y \rightarrow 0^{+}} \frac{1}{\sqrt{2 y+1}+\sqrt{y+1}}=\frac{1}{2}$.
d) $\lim _{n \rightarrow \infty} \frac{\left(n+(-1)^{n}\right)(n+1)}{3 n^{2}}=\lim _{n \rightarrow \infty} \frac{n^{2}+\left(1+(-1)^{n}\right) n+1}{3 n^{2}}=\lim _{n \rightarrow \infty}\left(\frac{1}{3}+\frac{1+(-1)^{n}}{3 n}+\frac{1}{3 n^{2}}\right)=\frac{1}{3}$
5. a) $\sum_{n=0}^{\infty} \frac{a^{n}+(-1)^{n}}{b^{2 n}}=\sum_{n=0}^{\infty}\left(\frac{a}{b^{2}}\right)^{n}+\left(\frac{-1}{b^{2}}\right)^{n}=\frac{1}{1-a / b^{2}}+\frac{1}{1+1 / b^{2}}$ (linearity and geometric series).
b) $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}(n+1)^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}=\frac{1}{1^{2}}-\lim _{n \rightarrow \infty} \frac{1}{(n+1)^{2}}=1$ (telescoping sum).
c) $\sum_{n=0}^{\infty} \frac{n}{n+1} x^{n}=\sum_{n=0}^{\infty}\left(1-\frac{1}{n+1}\right) x^{n}=\sum_{n=0}^{\infty} x^{n}-\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n}=\frac{1}{1-x}-\frac{1}{x} \sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}$
$=\frac{1}{1-x}-\frac{1}{x} \int_{0}^{x} \sum_{n=0}^{\infty} t^{n} d t=\frac{1}{1-x}-\frac{1}{x} \int_{0}^{x} \frac{1}{1-t} d t=\frac{1}{1-x}+\frac{1}{x} \log (1-x)$. We could also do the following: $\sum_{n=0}^{\infty} \frac{n}{n+1} x^{n}=x \frac{d}{d x} \sum_{n=0}^{\infty} \frac{1}{n+1} x^{n}=x \frac{d}{d x}\left[\frac{1}{x} \int_{0}^{x} \sum_{n=0}^{\infty} t^{n} d t\right]=x \frac{d}{d x}\left[\frac{1}{x} \int_{0}^{x} \frac{1}{1-t} d t\right]=x \frac{d}{d x}\left[-\frac{1}{x} \log (1-x)\right]=$ $x\left[\frac{1}{x^{2}} \log (1-x)+\frac{1}{x(1-x)}\right]=\frac{1}{x} \log (1-x)+\frac{1}{1-x}$
6. a) Since $\frac{1}{n!}<\frac{1}{2^{n-1}}$ for integers $n \geq 1$, and $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ converges (geometric series), the Comparison Test implies that $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges. We could also compare $\frac{1}{n!} \leq \frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$ and $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)$ converges as a telescoping sum.
b) First we note that $\frac{\sqrt{n+1}}{n^{2}}$ is asymptotically equal to $\frac{1}{n^{3 / 2}}: \lim _{n \rightarrow \infty} \frac{\sqrt{n+1} / n^{2}}{1 / n^{3 / 2}}=\lim _{n \rightarrow \infty} \sqrt{1+\frac{1}{n}}=1$. We could also compare $\frac{\sqrt{n+1}}{n^{2}} \leq \frac{\sqrt{2 n}}{n^{2}}=\frac{\sqrt{2}}{n^{3 / 2}}$. Since $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ converges (by the Integral Test, for example), the series $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n^{2}}$ converges.
c) Using the substitution $u=\log (x), d u=\frac{1}{x} d x$, we find

$$
\int_{2}^{n} \frac{1}{x \log (x)} d x=\int_{\log (2)}^{\log (n)} \frac{1}{u} d u=\log |\log (n)|-\log |\log (2)| \rightarrow \infty \text { as } n \rightarrow \infty
$$

Therefore the series $\sum_{n=2}^{\infty} \frac{1}{n \log (n)}$ diverges by the Integral Test.

