
MATH 166: HONORS CALCULUS II
EXAM II SOLUTIONS

APRIL 8, 1999

Problems 1 and 2 are definitions and statements of theroems that can be found in the text.

3. a) Integrating the formula
1

1 + x
= 1 − x + x2 + o(x3), gives log(1 + x) = x − 1

2
x2 +

1
3
x3 + o(x3) so

x3 log(1 + x) = x4 − 1
2
x5 +

1
3
x6 + o(x6).

b) Using the rule
1

1− u
= 1 + u + o(u) with u = x2 − x3 + o(x3) we get

1 + x + x2 + o(x3)
1− x2 + x3 + o(x3)

= (1 + x + x2 + o(x3))(1 + x2 − x3 + o(x3) + o(x2 − x3 + o(x3))

= (1 + x + x2 + o(x3))(1 + x2 + o(x2)) = 1 + x + 2x2 + o(x2)

c) The Lagrange form of the remainder is Enf(x) =
1

(n + 1)!
f (n+1)(c)xn+1 for some c in [−1, 1] (between 0

and x). Since f(x) = sin(x), the derivatives of f(x) are either ± sin(x) or ± cos(x), so |f (n+1)(x)| ≤ 1. Thus,

|Enf(x)| ≤ 1
(n + 1)!

|x|n+1 ≤ 1
(n + 1)!

since, by assumption, |x| < 1. Therefore |En| < 10−3 if (n+1)! > 1000

which occurs for n ≥ 6 (6! = 720 and 7! = 5040).

d) By a familiar algebraic identity, the partial sums are sn =
n∑

k=0

rk =
1

1− r
− rn+1

1− r
. Since |r|n+1 → 0 as

n →∞ when |r| < 1, the limit of the partial sums is lim
n→∞

sn =
1

1− r
.

4. a) lim
x→0

(1 + h(x))1/h(x) = exp[ lim
x→0

log(1 + h(x))/h(x)] = exp[ lim
x→0

h′(x)/(1 + h(x))
h′(x)

] = exp[ lim
x→0

1
1 + h(x)

] =

e. We could also solve this problem assuming only that h(x) is continuous by substituting u = h(x) and

u → 0 for x→ 0: exp[ lim
x→0

log(1+h(x))/h(x)] = exp[ lim
u→0

log(1+u)/u] = exp[ lim
u→0

1
1 + u

] = e (use L’Hôpital’s

rule, taking derivatives with respect to the variable u!).

b) Use L’Hopital’s rule twice: lim
x→0

ex2 − cos(x)
x2

= lim
x→0

2xex2
+ sin(x)
2x

= lim
x→0

(2 + 4x2)ex2
+ cos(x)

2
=

3
2
. We

could also use o-notation: lim
x→0

ex2 − cos(x)
x2

= lim
x→0

(1 + x2 + o(x3))− (1− 1
2x2 + o(x3)

x2
= lim

x→0

3
2

+ o(x) =
3
2
.

c) lim
x→∞

√
2x + x2 −

√
x + x2 = lim

x→∞

(2x + x2)− (x + x2)√
2x + x2 +

√
x + x2

= lim
x→∞

1√
2
x + 1 +

√
1
x + 1

=
1
2
. We could also

substitute x =
1
y
: lim

x→∞

√
2x + x2 −

√
x + x2 = lim

y→0+

√
2y + 1−

√
y + 1

y
= lim

y→0+

(2y + 1)− (y + 1)
y(
√

2y + 1 +
√

y + 1)
=

lim
y→0+

1√
2y + 1 +

√
y + 1

=
1
2
.

d) lim
n→∞

(n + (−1)n)(n + 1)
3n2

= lim
n→∞

n2 + (1 + (−1)n)n + 1
3n2

= lim
n→∞

(
1
3

+
1 + (−1)n

3n
+

1
3n2

)
=

1
3

1



2 APRIL 8, 1999

5. a)
∞∑

n=0

an + (−1)n

b2n
=

∞∑
n=0

( a

b2

)n

+
(−1

b2

)n

=
1

1− a/b2
+

1
1 + 1/b2

(linearity and geometric series).

b)
∞∑

n=1

2n + 1
n2(n + 1)2

=
∞∑

n=1

1
n2
− 1

(n + 1)2
=

1
12
− lim

n→∞

1
(n + 1)2

= 1 (telescoping sum).

c)
∞∑

n=0

n

n + 1
xn =

∞∑
n=0

(
1− 1

n + 1

)
xn =

∞∑
n=0

xn −
∞∑

n=0

1
n + 1

xn =
1

1− x
− 1

x

∞∑
n=0

1
n + 1

xn+1

=
1

1− x
− 1

x

∫ x

0

∞∑
n=0

tn dt =
1

1− x
− 1

x

∫ x

0

1
1− t

dt =
1

1− x
+

1
x

log(1− x). We could also do the following:

∞∑
n=0

n

n + 1
xn = x

d

dx

∞∑
n=0

1
n + 1

xn = x
d

dx

[ 1
x

∫ x

0

∞∑
n=0

tndt
]

= x
d

dx

[ 1
x

∫ x

0

1
1− t

dt
]

= x
d

dx

[
− 1

x
log(1 − x)

]
=

x[
1
x2

log(1− x) +
1

x(1− x)
] =

1
x

log(1− x) +
1

1− x

6. a) Since
1
n!

<
1

2n−1
for integers n ≥ 1, and

∞∑
n=1

1
2n−1

converges (geometric series), the Comparison Test

implies that
∞∑

n=0

1
n!

converges. We could also compare
1
n!
≤ 1

n(n + 1)
=

1
n
− 1

n + 1
and

∞∑
n=1

( 1
n
− 1

n + 1

)
converges as a telescoping sum.

b) First we note that
√

n + 1
n2

is asymptotically equal to
1

n3/2
: lim

n→∞

√
n + 1/n2

1/n3/2
= lim

n→∞

√
1 +

1
n

= 1. We

could also compare
√

n + 1
n2

≤
√

2n

n2
=
√

2
n3/2

. Since
∞∑

n=1

1
n3/2

converges (by the Integral Test, for example),

the series
∞∑

n=1

√
n + 1
n2

converges.

c) Using the substitution u = log(x), du =
1
x

dx, we find∫ n

2

1
x log(x)

dx =
∫ log(n)

log(2)

1
u

du = log | log(n)| − log | log(2)| → ∞ as n →∞

Therefore the series
∞∑

n=2

1
n log(n)

diverges by the Integral Test.


