ABEL'S THEOREM

MATH 166: CALCULUS II

Theorem (Abel). Suppose $\sum_{n=0}^{\infty} a_{n}$ converges. Then

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

converges absolutely for $|x|<1$ and

$$
\lim _{x \rightarrow 1^{-}} f(x)=\sum_{n=0}^{\infty} a_{n}
$$

Proof. Since $a_{n} \rightarrow 0$, there is a positive integer N such that $\left|a_{n}\right|<1$ for all $n \geq N$. Then $\left|a_{n} x^{n}\right|=\left|a_{n}\right||x|^{n}<|x|^{n}$ for all $n \geq N$. The series $\sum_{n=0}^{\infty}|x|^{n}$ converges for $|x|<1$, so the series $\sum_{n=0}^{\infty}\left|a_{n} x^{n}\right|$ converges by the Comparison Theorem.

To prove the statement about the limit, we must show that given $\epsilon>0$ there is a $\delta>0$ such that if $1-\delta<x<1$ then $|f(x)-s|<\epsilon$ where $s=\sum_{n=1}^{\infty} a_{n}$. The usual strategy is to try to write $f(x)-s=(1-x) \cdot$ (something) so that as $x \rightarrow 1$, $f(x) \rightarrow s$. Abel found a clever way to do this with series: Let $s_{k}=\sum_{n=0}^{k} a_{n}$ and define $s_{-1}=0$, so that $a_{n}=s_{n}-s_{n-1}$ for all $n \geq 0$. Then,

$$
\begin{aligned}
\sum_{n=0}^{k} a_{n} x^{n} & =\sum_{n=0}^{k}\left(s_{n}-s_{n-1}\right) x^{n}=\sum_{n=0}^{k} s_{n} x^{n}-\sum_{n=1}^{k} s_{n-1} x^{n} \\
& =\sum_{n=0}^{k} s_{n} x^{n}-\sum_{n=0}^{k-1} s_{n} x^{n+1} \quad[\text { shift index }] \\
& =s_{k} x^{k}+\sum_{n=0}^{k-1} s_{n} x^{n}(1-x)
\end{aligned}
$$

Now assume $|x|<1$ and let $k \rightarrow \infty$. Since $s_{k} x^{k} \rightarrow s \cdot 0=0$, we find

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=(1-x) \sum_{n=0}^{\infty} s_{n} x^{n}
$$

[^0]The formula for a geometric series implies that $1=(1-x) \sum_{n=0}^{\infty} x^{n}$, so $s=(1-x) \sum_{n=0}^{\infty} s x^{n}$ and

$$
f(x)-s=(1-x) \sum_{n=0}^{\infty} s_{n} x^{n}-(1-x) \sum_{n=0}^{\infty} s x^{n}=(1-x) \sum_{n=0}^{\infty}\left(s_{n}-s\right) x^{n}
$$

Given $\epsilon>0$, there is a positive integer N such that $\left|s_{n}-s\right|<\frac{\epsilon}{2}$ whenever $n \geq N$. Therefore, assuming $0<x<1$,

$$
\begin{aligned}
|f(x)-s| & =(1-x)\left|\sum_{n=0}^{\infty}\left(s_{n}-s\right) x^{n}\right| \leq(1-x) \sum_{n=0}^{\infty}\left|s_{n}-s\right| x^{n} \\
& =(1-x) \sum_{n=0}^{N}\left|s_{n}-s\right| x^{n}+(1-x) \sum_{n=N}^{\infty}\left|s_{n}-s\right| x^{n} \\
& <(1-x) \sum_{n=0}^{N}\left|s_{n}-s\right|+(1-x) \sum_{n=N}^{\infty} \frac{\epsilon}{2} x^{n} \\
& <(1-x) K+\frac{\epsilon}{2}
\end{aligned}
$$

where $K=\sum_{n=0}^{N}\left|s_{n}-s\right|$. The last inequality follows by adding the geometric series: $(1-x) \sum_{n=N}^{\infty} \frac{\epsilon}{2} x^{n}=\frac{\epsilon}{2} x^{N}<\frac{\epsilon}{2}$. We can make $(1-x) K$ small too: $(1-x) K<\frac{\epsilon}{2}$ if and only if $1-\frac{\epsilon}{2 K}<x$. Therefore, if we take $\delta=\frac{\epsilon}{2 K}$, then $1-\delta<x<1$ implies that

$$
|f(x)-s|<(1-x) K+\frac{\epsilon}{2}<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

which shows $\lim _{x \rightarrow 1^{-}} f(x)=s$.

[^0]: Date: April 16, 1999.

