There are 8 questions, most with several parts, worth a total of 110 points. Be sure to show all your work and justify all steps.

- 1. (25 pts) Define each of the following completely and precisely.
 - a) The natural logarithm function, $\log(x)$.

b) The natural exponential function, $\exp(x)$.

c) a^x for a > 0.

d) $\sinh(x)$ and $\cosh(x)$

e) $T_n f(x;a)$

- 2. (10 pts)
 - a) State the Fundamental Theorem of Calculus.

b) Prove this theorem for a continuous function on [a,b] using the Mean Value Theorem.

- 3. (10 pts)
 - a) State Taylor's Formula with the remainder (or error) term expressed as an integral.

b) Prove the error term $E_n f(x)$ has the form stated above by considering the function $F(t) = T_n f(x; t)$. (Show that $E_n f(x) = F(x) - F(a) = ...$)

4. (15 pts) Compute the following derivatives.

a)
$$\frac{d}{dx} \int_{1/x^2}^{x^2} \log(\cos(\sqrt{t})) dt$$

b)
$$\frac{d}{dx}(1+x^3)^{(1+x^5)}$$

c)
$$(f^{-1})'(1)$$
 if $f(x) = x + e^x$.

5. (15 pts) Compute the following integrals.

a)
$$\int \frac{\sqrt{x-1}}{x} dx$$

b) $\int (x\cos(x))^2 dx$

c)
$$\int \frac{x}{\sqrt{x^2 - x}} dx$$

- 6. (10 pts)
 - a) Give the partial fraction decomposition of $\frac{1}{x^3-1}$. (Solve for the constants.)

b) Use an appropriate substitution to transform

$$\int \frac{(\sin(x)+1)^2}{\cos(x)+3} \, dx$$

into the integral of a rational function of u. (Simplify as much as possible, but do not integrate.)

- 7. (15 pts) Find the Taylor polynomials.
 - a) $T_3 \tan(x)$

b) $T_{2n}(\log(1-x^2))$

c)
$$T_{3n} \left(\frac{1+x^n}{1+x^{2n}} \right)$$

8. (10 pts)

Use the Taylor polynomial of degree 3 for e^x to find an approximate value for the integral

$$\int_{0.5}^{1.0} \frac{e^x}{x} \, dx$$

and give an estimate for the error.